BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU

Mikroenkapsülasyon yöntemleri içerisinde püskürterek dondurma yöntemine olan ilgi, sağladığı birçok avantaj nedeniyle son zamanlarda giderek artmaktadır. Püskürterek dondurma yönteminde, taşıyıcı olarak hidrofobik karakterli lipit materyaller kullanılmaktadır. Erime sıcaklığına getirilerek sıvı forma geçirilen lipit matriks içerisine biyoaktif gıda bileşeni eklenerek homojenize edilmekte ve püskürterek dondurma sisteminde erime sıcaklığının daha altındaki bir sıcaklıkta lipit damlacıklarının katılaşması sağlanarak mikroenkapsülasyon işlemi gerçekleştirilmektedir. Püskürterek dondurma yönteminde, taşıyıcı materyalin eritilmesi sırasında minimal bir sıcaklık uygulanmakta olup aktif materyal doğrudan yüksek sıcaklığa maruz kalmamaktadır. Bu nedenle son zamanlarda sıcaklık hassasiyeti yüksek biyoaktif gıda bileşenlerinin mikroenkapsülasyonunda püskürterek dondurma tekniği yaygın olarak tercih edilmektedir. Ayrıca püskürterek dondurma yönteminde taşıyıcı olarak kullanılan hidrofobik materyaller, mikrokapsüllerin mide sindiriminden etkilenmeden geçerek asıl etkili oldukları bölge olan kolonda salınımına imkan vermekte ve bu yolla biyoaktif gıda bileşenlerinin biyoyarayışlılığını da oldukça arttırmaktadır. 

THE MICROENCAPSULATION OF BIOACTIVE FOOD COMPONENTS BY SPRAY CHILLING METHOD

Recently, interest in spray chilling has been increasing due to the many advantages provided by microencapsulation methods. In the spray chilling method, hydrophobic lipid materials are used as carrier.  The bioactive food ingredient is added into the lipid matrix which is brought to the melting temperature and homogenized. The microencapsulation process is operated by solidifying the lipid droplets at a temperature lower than the melting temperature in the spray chilling system. Relatively low temperature is applied during melting of the carrier material and the active material is not exposed directly to high temperature in the spray chilling method. For this reason, it is widely preferred in the microencapsulation of heat sensitive bioactive food components. In addition, using of hydrophobic materials as carrier in the spray chilling method allow the microcapsules to pass through the gastric digestion and reach colon where they are most effective, thereby it increases the bioavailability of the bioactive food components.

___

  • Alvim, I.D., De Souza, F.D., Koury, I.P., Jurt, T., Dantas, F.B.H. (2013). Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles. Food Sci Technol, 33: 34-39.
  • Alvim, I.D., Stein, M.A., Koury, I.P., Dantas, F.B.H., Cruz, C. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT-Food Science and Technology, 65: 689-694.
  • Arslan-Tontul, S. (2017). Probiyotik mikroorganizmaların püskürterek dondurma ve kurutma teknikleriyle mikroenkapsüle edilerek probiyotik kek üretiminde kullanım imkanlarının araştırılması, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Antalya. 159 s.
  • Arslan-Tontul, S., Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. Food Sci Technol, 81: 160-169.
  • Arslan, S., Erbas, M., Tontul, I., Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. Food Sci Technol, 63(1): 685-690.
  • Bampi, G.B., Backes, G.T., Cansian, R.L., De Matos, F.E., Ansolin, I.M.A., Poleto, B.C., Corezzolla, L.R., Favaro-Trindade, C.S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp lactis and its use in the preparation of savory probiotic cereal bars. Food Biopro Technol, 9(8): 1422-1428.
  • Burgain, J., Gaiani, C., Linder, M., Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Eng, 104(4): 467-483.
  • Chambi, H.N.M., Alvim, I.D., Barrera-Arellano, D., Grosso, C.R.F. (2008). Solid lipid microparticles containing water-soluble compounds of different molecular mass: Production, characterisation and release profiles. Food Res Int, 41(3): 229-236.
  • Chavez, B.E., Ledeboer, A.M. (2007). Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technol, 25(7-8): 1193-1201.
  • Consoli, L., Grimaldi, R., Sartori, T., Menegalli, F.C., Hubinger, M.D. (2016). Gallic acid microparticles produced by spray chilling technique: Production and characterization. Food Sci Technol, 65: 79-87.
  • Cook, M.T., Tzortzis, G., Charalampopoulos, D., Khutoryanskiy, V.V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J Control Release, 162(1): 56-67.
  • De Matos, F.E., Comunian, T.A., Thomazini, M., Favaro-Trindade, C.S. (2017). Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. Food Sci Technol, 75: 251-260.
  • De Matos, F.E., Jr., Thomazini, M., Trindade, M.A., Fávaro-Trindade, C.S. (2015). Application of free or encapsulated Vitamin C to chicken frankfurter sausage by spray chilling: Physicochemical characteristics, stability and sensory acceptance. Brazil J Food Technol, 18(4): 322-331.
  • De Prisco, A., Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trend Food Sci Technol, 48: 27-39.
  • Desai, K.G.H., Park, H.J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technol, 23(7): 1361-1394.
  • Di Sabatino, M., Albertini, B., Kett, V.L., Passerini, N. (2012). Spray congealed lipid microparticles with high protein loading: Preparation and solid state characterisation. Eur J Pharm Sci, 46(5): 346-356.
  • Dianawati, D., Mishra, V., Shah, N.P. (2013). Survival of Bifidobacterium longum 1941 microencapsulated with proteins and sugars after freezing and freeze drying. Food Res Int, 51(2): 503-509.
  • Dianawati, D., Mishra, V., Shah, N.P. (2016). Survival of microencapsulated probiotic bacteria after processing and during storage: A review. Critl Rev Food Sci Nutr, 56(10): 1685-1716.
  • Gamboa, O.D., Goncalves, L.G., Grosso, C. F. (2011). Microencapsulation of tocopherols in lipid matrix by spray chilling method. 11th International Congress on Engineering and Food, 1732-1739 ss, 1732-1739 s.
  • Garti, N., Mcclements, D.J. (2012). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Academic Press, Boca Raton. 612 s.
  • Gavory, C., Abderrahmen, R., Bordes, C., Chaussy, D., Belgacem, M.N., Fessi, H., Briancon, S. (2014). Encapsulation of a pressure sensitive adhesive by spray-cooling: Optimum formulation and processing conditions. Adv Powder Technol, 25(1): 292-300.
  • Ghandi, A., Powell, I.B., Chen, X.D., Adhikari, B. (2012). The effect of dryer inlet and outlet air temperatures and protectant solids on the survival of Lactococcus lactis during spray drying. Drying Technol, 30(14): 1649-1657.
  • Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N. (1999). Encapsulation in the food industry: a review. Int J Food Sci Nutr, 50(3): 213-224.
  • Gomes, G.V.D., Borrin, T.R., Cardoso, L.P., Souto, E., De Pinho, S.C. (2013). Characterization and shelf life of beta-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Brazil Archives Biol Technol, 56(4): 663-671.
  • Gouin, S. (2004). Microencapsulation. Trend Food Sci Technol, 15(7): 330-347.
  • Huq, T., Khan, A., Khan, R.A., Riedl, B., Lacroix, M. (2013). Encapsulation of probiotic bacteria in biopolymeric system. Critic Rev Food Sci Nutr, 53(9): 909-916.
  • Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. Food Sci Technol, 62(1): 847-853.
  • Kwak, H.S., Ihm, M.R., Ahn, J. (2001). Microencapsulation of beta-galactosidase with fatty acid esters. J Dairy Sci, 84(7): 1576-1582.
  • Lahtinen, S.J., Ouwehand, A.C., Salminen, S.J., Forssell, P., Myllarinen, P. (2007). Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett Appl Microbiol, 44(5): 500-505.
  • Lakkis, J.M. (2016). Encapsulation and controlled release in bakery applications. In: Encapsulation and Controlled Release Technologies in Food Systems: Second Edition Lakkis, J.M. (Ed.). Wiley-Blackwell, Boca Raton, pp. 204-235.
  • Leonel, A.J., Chambi, H.N.M., Barrera-Arellano, D., Pastore, H.O., Grosso, C.R.F. (2010). Production and characterization of lipid microparticles produced by spray cooling encapsulating a low molar mass hydrophilic compound. Cien Tecnol Alimentos, 30(1): 276-281.
  • Lopes, J.D., Grosso, C.R.F., Calligaris, G.D., Cardoso, L.P., Basso, R.C., Ribeiro, A.P.B., Efraim, P. (2015). Solid lipid microparticles of hardfats produced by spray cooling as promising crystallization modifiers in lipid systems. Eur J Lipid Sci Technol, 117(11): 1733-1744.
  • Madene, A., Jacquot, M., Scher, J., Desobry, S. (2006). Flavour encapsulation and controlled release - A review. Int J Food Sci Technol, 41(1): 1-21.
  • Maschke, A., Becker, C., Eyrich, D., Kiermaier, J., Blunk, T., Gopferich, A. (2007). Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm, 65(2): 175-187.
  • Matos, F.E., Di Sabatino, M., Passerini, N., Favaro-Trindade, C.S., Albertini, B. (2015). Development and characterization of solid lipid microparticles loaded with ascorbic acid and produced by spray congealing. Food Res Int, 67: 52-59.
  • Mba, O.I., Dumont, M.J., Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Biosci, 10: 26-41.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Proc Food Sci, 1: 1806-1815.
  • Okuro, P.K., De Matos Junior, F.E., Favaro-Trindade, C.S. (2013a). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol, 51(2): 171–182.
  • Okuro, P.K., Thomazini, M., Balieiro, J.C.C., Liberal, R., Favaro-Trindade, C.S. (2013b). Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res Int, 53(1): 96-103.
  • Oriani, V.B., Alvim, I.D., Consoli, L., Molina, G., Pastore, G.M., Hubinger, M.D. (2016). Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Res Int, 80: 41-49.
  • Oxley, J.D. (2012). Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation. In: Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals Garti, N., Bhandari, B. (Eds.). Academic Press, Boca Raton, pp. 110-130.
  • Park, K.M., Sung, H., Choi, S.J., Choi, Y.J., Chang, P.S. (2014). Double-layered microparticles with enzyme-triggered release for the targeted delivery of water-soluble bioactive compounds to small intestine. Food Chem, 161: 53-59.
  • Pedroso, D.D., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J, 26(2): 127-132.
  • Pedroso, D.L., Dogenski, M., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2013). Microencapsulation of Bifidobacterium animalis subsp lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Brazil J Microbiol, 44(3): 777-783.
  • Pelissari, J.R., Souza, V.B., Pigoso, A.A., Tulini, F.L., Thomazini, M., Rodrigues, C.E.C., Urbano, A., Fauaro-Trindade, C.S. (2016). Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food Bioproduct Proces, 98: 86-94. Reineccius, G.A. (2004). The spray drying of food flavors. Drying Technol, 22(6): 1289-1324.
  • Ribeiro, M., Arellano, D.B., Grosso, C.R.F. (2012). The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food Res Int, 47(1): 38-44.
  • Risch, S.J. (1995). Encapsulation: Overview of uses and techniques. In: Encapsulation and Controlled Release of Food Ingredients Risch, S.J., Reineccius, G.A. (Eds.). American Chemical Society, Washington, pp. 2-7.
  • Rokka, S., Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol, 231(1): 1-12.
  • Salvim, M.O., Thomazini, M., Pelaquim, F.P., Urbano, A., Moraes, I.C.F., Favaro-Trindade, C.S. (2015). Production and structural characterization of solid lipid microparticles loaded with soybean protein hydrolysate. Food Res Int, 76: 689-696.
  • Sartori, T., Consoli, L., Hubinger, M.D., Menegalli, F.C. (2015). Ascorbic acid microencapsulation by spray chilling: Production and characterization. Food Sci Technol, 63(1): 353-360.
  • Schubert, M.A., Harms, M., Muller-Goymann, C.C. (2006). Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci, 27(2-3): 226-236.
  • Sillick, M., Gregson, C.M. (2012). Spray chill encapsulation of flavors within anhydrous erythritol crystals. Food Sci Technol, 48(1): 107-113.
  • Tulini, F.L., Souza, V.B., Echalar-Barrientos, M.A., Thomazini, M., Pallone, E., Favaro-Trindade, C.S. (2016). Development of solid lipid microparticles loaded with a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum): Potential for increasing antioxidant content in functional foods for diabetic population. Food Res Int, 85: 10-18.
  • Tulini, F.L., Souza, V.B., Thomazini, M., Silva, M.P., Massarioli, A.P., Alencar, S.M., Pallone, E., Genovese, M.I., Favaro-Trindade, C.S. (2017). Evaluation of the release profile, stability and antioxidant activity of a proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract co-encapsulated with alpha-tocopherol by spray chilling. Food Res Int, 95: 117-124.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR
Sayıdaki Diğer Makaleler

GIDALARIN TÜKETİLMESİ SIRASINDA RETRONAZAL YOLLA AROMA SALINIMININ BELİRLENMESİ

Tülin EKER, Turgut CABAROĞLU

BEYAZ ÜZÜM POSASININ LAKTİK ASİT ÜRETİMİNDE KULLANILMASI

Ali Oğuz BÜYÜKKİLECİ, Emrah BAYRAK

ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION

Gülay ÖZKAN, Seda Ersus BİLEK

UTILIZATION OF WHITE GRAPE POMACE FOR LACTIC ACID PRODUCTION

Ali Oğuz BÜYÜKKİLECİ, Emrah BAYRAK

TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ

Saliha Şahin, Büşra Karkar, Mesut Ertan Güneş

ALKOLLÜ İÇKİLERİN KALİTE KONTROLÜNDE KULLANILAN FARKLI ALKOL TAYİN METOTLARININ KARŞILAŞTIRILMASI VE NIR (YAKIN KIZILÖTESİ SPEKTROSKOPİSİ) METODUNUN VALİDASYONU

Merve DARICI, Turgut CABAROĞLU

RHEOLOGICAL AND SENSORIAL PROPERTIES OF SESAME PASTE BLENDS PREPARED WITH DIFFERENT SUGAR SOURCES

Mehmet KOÇ, Figen Kaymak ERTEKİN, Saniye AKYIL, Esra DEVSEREN, Dilara TOMRUK, Işıl İLTER

SAKAROZ İKAMESİ OLARAK FARKLI TİP VE DÜZEYLERDE ŞEKER OTU (STEVIA REBAUDIANA BERTONI) BAZLI TATLANDIRICI KULLANILMASININ BİSKÜVİ NİTELİKLERİ ÜZERİNE ETKİLERİ

Halef DİZLEK, Emre GİRİTLİOĞLU

MARAŞ TARHANASI ÜRETİMİNDE KEFİR KULLANIMININ SON ÜRÜN ÜZERİNE ETKİLERİ

Hakan Erinç, Selma Çifçi

FARKLI RENKLİ ŞİŞELERDE DEPOLANAN DOMATES ÇEKİRDEĞİ YAĞININ YAĞ ASİDİ KOMPOZİSYONU ÜZERİNE GÜN IŞIĞININ ETKİSİ

Mehmet AKBULUT, Hacer ÇOKLAR, Burcu AYDOĞAN COŞKUN