BEYAZ ÜZÜM POSASININ LAKTİK ASİT ÜRETİMİNDE KULLANILMASI

Beyaz üzüm posası (BÜP), biyo-temelli kimyasalların fermantasyonla üretimi için kullanılma potansiyeline sahip yüksek miktarda çözünmüş karbonhidrat (glikoz ve fruktoz) içerir. Bu çalışmada, bu atık Lactobacillus casei ile laktik asit (LA) üretilerek değerlendirilmiştir. BÜP kültür ortamına %10 oranında doğrudan eklendiğinde 33.3 g/L LA elde edilmiştir. BÜP’ün sulu özütü daha hızlı bir LA üretimi sağlamıştır. Özüt çıkarma aşamasında posa miktarının artırılması sayesinde daha fazla LA elde edilmiştir ancak, bu işlem üretim verimini kayda değer biçimde düşürmüştür. Tüm koşullarda fruktoz glikoza göre daha yavaş kullanılmıştır. LA üretimi için 10 g/L maya özütü tozu gerekmiştir. Buna alternatif olarak, ekmek mayası otolize uğratılmış ve bu lizat azot kaynağı olarak başarıyla kullanılmıştır. Bulgulara göre, BÜP’ün L. casei ile LA üretimi için sürdürülebilir bir kaynak olduğu düşünülebilir, ancak, posada bulunan diğer maddelerin olası olumsuz etkileri önlenmelidir. 

UTILIZATION OF WHITE GRAPE POMACE FOR LACTIC ACID PRODUCTION

White grape pomace (WGP) contains high amount of soluble carbohydrates (glucose and fructose), which can potentially be used as a carbon source in the fermentative production of bio-based chemicals. In this study, this waste was valorized by lactic acid (LA) production by Lactobacillus casei. Adding WGP directly into the culture medium at a solid loading of 10% yielded 33.3 g/L LA. Water extract of WGP allowed comparably faster LA production. Increasing the solid loading in the extraction step increased the LA titers, however, it had a significant negative effect on the production rate.  In all cases, fructose was consumed at a slower rate as compared to glucose. Yeast extract powder was required at a concentration of 10 g/L to support LA production. Alternatively, baker’s yeast was autolyzed and the lysate was successfully used as the nitrogen source. The findings show that WGP can be regarded as a sustainable plant-based feedstock for LA production by L. casei, however, the probable negative effect of other pomace constituents should be avoided. 

___

  • Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances 31(6): 877-902.
  • Basu, S., Bose, C., Ojha, N., Das, N., Das, J., Pal, M., Khurana, S. (2015). Evolution of bacterial and fungal growth media. Bioinformation 11(4): 182-184.
  • Bolner de Lima, C.J., Coelho, L.F., Blanco, K.C., Contiero, J. (2009). Response surface optimization of D(-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. African Journal of Biotechnology 8(21): 5842-5846.
  • Borzani, W., Sanchez Podlech, P.A., Luna, M.F., Jerke, P.R., Stein, M.A.C.F. (1993). Kinetics of semicontinuous microbial transformation of whey by Lactobacillus bulgaricus varying the initial concentration of yeast autolysate. Journal of Biotechnology 31(1): 61-66.
  • Botella, C., Ory, I.d., Webb, C., Cantero, D., Blandino, A. (2005). Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochemical Engineering Journal 26(2): 100-106.
  • Bustos, G., Moldes, A.B., Cruz, J.M., Domínguez, J.M. (2004). Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. Journal of Agricultural and Food Chemistry 52(4): 801-808.
  • Buyukkileci, A.O., Harsa, S. (2004). Batch production of L(+) lactic acid from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology and Biotechnology 79(9): 1036-1040.
  • Carreira, P., Mendes, J.A.S., Trovatti, E., Serafim, L.S., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P. (2011). Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology 102(15): 7354-7360.
  • Castillo Martinez, F.A., Balciunas, E.M., Salgado, J.M., Domínguez González, J.M., Converti, A., Oliveira, R.P.d.S. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science & Technology 30(1): 70-83.
  • Choi, I.S., Lee, Y.G., Khanal, S.K., Park, B.J., Bae, H.J. (2015). A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Applied Energy 140: 65-74.
  • Corbin, K.R., Hsieh, Y.S.Y., Betts, N.S., Byrt, C.S., Henderson, M., Stork, J., DeBolt, S., Fincher, G.B., Burton, R.A. (2015). Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification. Bioresource Technology 193: 76-83.
  • Deng, Q., Penner, M.H., Zhao, Y. (2011). Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International 44(9): 2712-2720.
  • Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., Sels, B.F. (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science 6(5): 1415-1442.
  • Fontana, A.R., Antoniolli, A., Bottini, R. (2013). Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. Journal of Agricultural and Food Chemistry 61(38): 8987-9003.
  • García-Ruiz, A., Cueva, C., González-Rompinelli, E.M., Yuste, M., Torres, M., Martín-Álvarez, P.J., Bartolomé, B., Moreno-Arribas, M.V. (2012). Antimicrobial phenolic extracts able to inhibit lactic acid bacteria growth and wine malolactic fermentation. Food Control 28(2): 212-219.
  • Garcia-Ruiz, A., Moreno-Arribas, M.V., Martin-Alvarez, P.J., Bartolome, B. (2011). Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria. Int J Food Microbiol 145(2-3): 426-431.
  • Ghaffar, T., Irshad, M., Anwar, Z., Aqil, T., Zulifqar, Z., Tariq, A., Kamran, M., Ehsan, N., Mehmood, S. (2014). Recent trends in lactic acid biotechnology: A brief review on production to purification. Journal of Radiation Research and Applied Sciences 7(2): 222-229.
  • Hayek, S.A., Ibrahim, S.A. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences 4(11): 73-87.
  • Hofvendahl, K., Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology 26(2): 87-107.
  • Kawaguchi, H., Hasunuma, T., Ogino, C., Kondo, A. (2016). Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Current Opinion in Biotechnology 42: 30-39.
  • Korkie, L.J., Janse, B.J.H., Viljoen-Bloom, M. (2002). Utilising grape pomace for ethanol production. South African Journal of Enology and Viticulture 23(1): 31-36.
  • Lu, Z., Fleming, H.P., McFeeters, R.F. (2001). Differential glucose and fructose utilization during cucumber juice fermentation. Journal of Food Science 66(1): 162-166.
  • Mendes, J.A.S., Xavier, A.M.R.B., Evtuguin, D.V., Lopes, L.P.C. (2013). Integrated utilization of grape skins from white grape pomaces. Industrial Crops and Products 49: 286-291.
  • Menon, V., Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science 38(4): 522-550.
  • Michelson, T., Kask, K., Jõgi, E., Talpsep, E., Suitso, I., Nurk, A. (2006). L(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enzyme and Microbial Technology 39(4): 861-867.
  • Nancib, A., Nancib, N., Boudrant, J. (2009). Production of lactic acid from date juice extract with free cells of single and mixed cultures of Lactobacillus casei and Lactococcus lactis. World Journal of Microbiology & Biotechnology 25(8): 1423-1429.
  • Rivas, B., Moldes, A.B., Domı́nguez, J.M., Parajó, J.C. (2004). Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. International Journal of Food Microbiology 97(1): 93-98.
  • Sabel, A., Bredefeld, S., Schlander, M., Claus, H. (2017). Wine phenolic compounds: Antimicrobial properties against yeasts, lactic acid and acetic acid bacteria. Beverages 3(3): 29.
  • Şahin, C. (2002). Aytolytic and preteolytic yeast biomass degredation. M.Sc. Dissertation, Middle East Technical University, Ankara, Turkey, 78 s. Wang, Y., Tashiro, Y., Sonomoto, K. (2015). Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering 119(1): 10-18.
  • Xu, Y., Burton, S., Kim, C., Sismour, E. (2016). Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia‐grown grape varieties. Food Science & Nutrition 4(1): 125-133.
  • Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable & Sustainable Energy Reviews 66: 751-774.
  • Zheng, Y., Lee, C., Yu, C., Cheng, Y.-S., Simmons, C.W., Zhang, R., Jenkins, B.M., VanderGheynst, J.S. (2012). Ensilage and bioconversion of grape pomace into fuel ethanol. Journal of Agricultural and Food Chemistry 60(44): 11128-11134.
  • Zhou, S., Ingram, L.O. (2000). Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (celz and cely) from Erwinia chrysanthemi. Journal of Bacteriology 182(20): 5676-5682.