Sepsiste indüklenebilen nitrik oksit sentaz inhibitörü (iNOS) ve antioksidanların böbrek hasarı ve fonksiyonlarına etkileri

Amaç: Çalışmanın amacı deneysel sepsis modelinde pentoksifilin, L-arginin ve aminoguanidinin plazma nitrik oksid (NO) ve malondialdehit (MDA) düzeylerine etkisini belirlemek, NO 've MDA düzeyleri ile böbrek hasarı ve böbrek fonksiyonları arasındaki ilişkiyi incelemektir. Yöntem: Wistär albino cinsi 60 rat kullanıldı. Hatlar 10'arlı 6 gruba ayrıldı. Ratlarda çekum ligasyon-perforasyon (CLP) yöntemi ile sepsis geliştirildi. Ratlar, Grup I: Sham işlemi, Grup II: CLP (sepsis), Grup III: CLP + 10 mg/kg L-arginin , Grup IV: CLP +15 mg/kg aminoguanidin, Grup V: CLP + L-arginin + aminoguanidin (aynı dozlar), Grup Vl: CLP +15 mg/kg pentoksifilin şeklinde gruplara ayrıldı, işlemden 24 saat sonra ratlardan NO, MDA, lökosit, BUN, kreatinin tayini için kan örnekleri ve doku hasarını belirlemek için 1 g böbrek doku örnekleri alındı. Bulgular: Lökosit sayısı CLP uygulanan gruplarda anlamlı olarak arttı. NO düzeyleri sepsis grubu ve L-arginin grubunda anlamlı olarak yükselirken, aminoguanidin ve aminoguanidin + L-arginin gruplarında sham grubuna benzer bulundu. CLP uygulanan gruplarda BUN, kreatinin, sham grubuna göre anlamlı olarak yüksekti, ancak pentoksifilin, aminoguanidin ve aminoguanidin + L-arginin gruplarının değerleri sepsis ve L-arginin gruplarına göre anlamlı olarak düzelme gösterdiler. Sepsis ve L-arginin gruplarındaki MDA düzeyleri sham grubuna göre anlamlı olarak yüksek bulundu. Sonuç: Sepsiste artan MDA ve NO'nun neden olduğu böbrek hasarını ve böbrek fonksiyonlarmdaki bozulmayı önlemek amacıyla tedavi protokollerine pentoksifilin ve aminoguanidin eklenebilir.

The effects of İNOS inhibitors and antioxidants on kidney pathology and function in sepsis

Objective: The aim of this study is to investigate the effects of pentoxyfillin, L-arginin and aminoguanidin on plasma malondialdehyde (MDA) and nitric oxide (NO) levels, and to determine the relations between MDA and NO levels on kidney pathology and functions. Methods: Sixty Wistar Albino rats were used. The rats were divided into 6 groups, each containing 10 subjects. Sepsis was induced by cecal ligation and puncture (CLP) method. Group I: Sham group, Group II: CLP (sepsis), Group III: CLP + 10 mg/kg L-arginin administration, Group IV: CLP + 15 mg/kg aminoguanidin administration, Group V: CLP + L-arginin + aminoguanidin (as groups III and IV) Group VI: CLP+15 mg/kg/day pentoxyfillin. Blood samples were taken for the determination of NO, MDA, leukocyte counts, BUN, creatinine and as well as 1 g kidney tissue sample was obtained for determination of tissue damage. Results: Leukocyte count increased in CLP induced groups significantly. While NO levels were significantly higher in sepsis and L-arginin groups, the levels in aminoguanidin and aminoguanidin + L-arginin groups were similar to Sham group. BUN, creatinine levels were significantly higher in CLP applied groups thari in sham group, while values in aminoguanidin and aminoguanidin + L-arginin showed a significant improvement compared to sepsis and L-arginin groups. Renal tissue damage in sepsis and L-arginin groups were more severe than the other groups. MDA levels in CLP induced groups were found to be higher than the sham group. Conclusion: Aminoguanidin and pentoxifillin may be added to treatment protocols in sepsis in order to prevent kidney tissue damage and dysfunction both of which (at least partially) caused by elevated NO levels.

___

  • 1. Abraham E. Rapidly expanding horizons. New Horizons 1993;1:1-2.
  • 2. Bone RC. Sepsis and septic shock. Consultant series in infectious disease. Ann Inter Med 1993;3:5-25.
  • 3. Young LS. Sepsis syndrome. In: Mandell GL, Bennett JE, Dalin R, editors. Principles and practice of infectious disease 4th ed. New York: Churchill Livingstone; 1995. p.690-705.
  • 4. Lehr HA, Bittinger F, Kirkpatrick CJ. Microcirculatory dysfunction in sepsis: A pathogenetic basis for therapy. J Pathol 2000;190:373-86.
  • 5. Elsasser S, Schachinger H, Strabel W. Adjunctive Drug treatment in severe hypoxic respiratory failure. Drugs 1999;58:429-46.
  • 6. Wanecek M, Weitzbeg E, Runedil A, Oldner A. The endotelian system in septic and endotoxin shock. Eur J Pharmacol 2000;407:1-7.
  • 7. Mehta S, Javeshghani D, Datta P, Levy RD, Magder S. Porcine. Endotoxemic shock is associated with increased expired nitric oxide. Crit Care Med 1999;27:385-93.
  • 8. Volk T, Kox WJ. Endothelium function in sepsis. Infan Res 2000;49:185-98.
  • 9. Karima R, Matsumoto S, Higashi H, Matsushima K. The molecular pathogenesis of endotoxic shock and organ failure. Molecular Med Today 1999;123-32.
  • 10. Hussein Z, Beerahee M, Grover R, Jordan B, Jeffs R, Donaldson J, et al. Pharmacokinetics of nitric oxide syntase inhibitor L-N-metyargininehydrochloride in patients with septic shock. Clin Pharmacol Ther 1999;65:1-9.
  • 11. Prins HA, Houdijk AP, Wiezer MJ, Teerlink T, van Lambalgen AA, Thijs LG. The effect of mild endotoxemia during low arginine plasma levels on organ blood flow in rats. New Horizons 2000;5:66-8.
  • 12. Shhoonover LL, Stewart AS, Clifton GD. Hemodynamic and cardiovascular effects of Nitric Oxide modulation in the therapy of septic shock Pharmacotherapy 2000;20:1184-97.
  • 13. İskit AB, Sungur A, Gedikoğlu G. The effects of basentan, aminoguanidine and L-cavanine on mesenterric blood flow, spleen and liver in endotoxaemic mice. Eur J Pharmacol 1999;379:73-80.
  • 14. Gibaldi M: What is NO and why are so many people studying it? J Clin Pharmacol 1993;33:488-96.
  • 15. Archer S: Measurement of nitric oxide in biological molecules. FASEB J 1993,7:349-60.
  • 16. Knowles R: Nitric oxide syntheses. Biochem 1993. p:3-6,
  • 17. Grisham MB: Reactive metabolites of oxygen and nitrogen biology and medicine. 1992. p 76-84.
  • 18. Wennmalm A, Edlund A. Metabolism and excretion of nitric oxide in humans. Circ Res 1993;73:1121-7.
  • 19. Lazaron V. NO barrier too tight. Crit Care Med 1999;27:2318-9.
  • 20. Kan H. Is big NO little evil twin? Crit Care Med 2000;28:1669-70.
  • 21. Smarason AK, Allman KG, Young D, Redman CWG. Elevated levels of serum nitrate a stable end product of nitric oxide in women with preeclempsia. Br J Obstet Gynecol 1997;104:538-43.
  • 22. Parker MM, Parillo JE. Septic shock: Haemodynamics and pathogenesis. JAMA 1983;250:3324-7.
  • 23. Bone RC. Sepsis, the sepsis syndrome, multiorgan failure: A sign for comparable definitions. Ann Intern Med 1991;114:332-3.
  • 24. Salyers AA, Whitt DD. Septic shock. In: Salyers AA, Whitt DD, editors. Bacterial pathogenesis. A molecular approach. Washington: American Society for Microbiology; 1994. p.56-60.
  • 25. Gray GA, Schott C, Juloy-Schaeffer G, Fleming I, Parratt JR, Stoclet JC. The effect of inhibitors of the L-arginine inhibitors of L-arginine/NO pathway on endotoxine induced loss of vascular responsivities in ananesthetized rats. Br J Pharmacol 1991;103:1218-24.
  • 26. 26.Annane D, Sanquer S, Sebille V, Faye A, Djuranovic D, Raphael JC, Gajdos F, Bellissart E. Compartmentalized inducible nitric oxide syntheses activity in septic shock. Lancet 2000;355:1143-8.
  • 27. Muray PT, Waylam ME, Umans JG. Nitric oxide and septic vascular dysfunction. Anesth Analg 2000;90:89-101.
  • 28. Kimchi A, Ellrodt AG, Berman DS. Right ventricular performance in septic shock: A combined radionucleotide and haemodynamic study. J Am Coll Cardiol 1984;4:945-51.
  • 29. Walley KR. Many roles of nitric oxide in regulating cardiac function in sepsis. Crit Care Med 2000;28:2135-8.
  • 30. Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horizons 1995;3:2-32.
  • 31. Nava E, Palmer RMJ, Moncado S. The Role Of nitric oxide in endotoxic shock. Effects of N-monomethyl-L-arginine. J Cardiovasc Pharmacol 1992;87:2593-7.
  • 32. Mackenzic IM, Garrard CS, Young JD. Indices of nitric oxide synthesis and outcome in critically ill patients. Anaesthesia 2001;56:326-30.
  • 33. Salvemini D, Korbut R, Anggard E, Mannaioni PF, Vane J. Immediate release of a nitric oxide like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 1990;87:2593-7.
  • 34. Lorente JA, Delgado MA, Tejedor C. Modulation of systemic haemodynamics by exogeneous L-arginin in normal and bacteriemic sheep. Crit Care Med 1999;27:2474-9.
  • 35. Gold ME, Bush PA, Ignora LJ. Depletion of arterial L-arginine causes reversible tolerance to endothelium dependent relaxation. Biochm Biophys Res Commun 1989;164:714-21.
  • 36. Fleming I, Gray GA, Julay-Schaefer G, Parratt JR, Stoclet JC. Incubation with endotoxin activates the L-argininne pathway in vascular tissue. Biochemic Biophys Res Com 1990;171:562-8.
  • 37. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hatter BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992;257:387-9.
  • 38. Walder CE, Thiermann C, Vane JR. The involvement of endothelium derived relaxing factor in regulation of renal cortical blood flow in rat. Br J Pharmacol 1991;102:967-73.
  • 39. Hishikawa K, Nakaki T, Suzuki H. L-arginin as an antihypertensive agent. J Cardiovasc Pharmacol 1992;20:196-7.
  • 40. Kayaalp O. Rasyonel tedavi yönünden tıbbi farmakoloji 4th. ed. Ankara; Feryal Matbacılık; 1988.
  • 41. M’andi Y, Farkas G. Effects of pentoxifyllin and pentaglobulin on TNF and IL-6 production in septic patients. Acta Microbiol Immunol 1995;42:301-8.
  • 42. Zenni F, Pain P, Vindimian M, Gay JP, Gery P, et al. Effects of pentoxyphyllin on circulating cytokine concentrations and hemodynamics in patients with septic shock: Results from a double-blind, randomized, placevo-controlled study. Crit Care Med 1996;24:207-14.
  • 43. Shorhorting MM, Schode UF. The effects of pentoxifylline in septic shock-new pharmacological aspects of an established drug. J Med 1989;20:97-105.
  • 44. Anton EO, Quinella AG, Sato AL, Liova J, Perez LF. Cecal ligation and puncture as amodel of sepsis in the rat: Influence of the puncture size on mortality, bacteremia, endotoxemia and tumor necrosis factor alpha levels. Eur Surg Res 2001;33:77-9.
  • 45. Malinski T, Bailey F, Chopp M. Nitric oxide measured by porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 1993;13:355-8.
  • 46. Hammauda AE, Soliman SF, Tolba KA, el-Kabbany ZA, Makhlouf MS. Plasma concentrations of lipid peroxidation products in children with acute lymphoblastic leukemia. Clin Chem 1992;38:594-5.
  • 47. Vincent JL. Update on sepsis: Pathophysiology and treatment. Acta Clinica Belgia 2000;55.79-87.
  • 48. Billiay A, Vandekerckhave F. Cytokines and their interactions with other inflammatory mediators in the pathogenesis of sepsis and septic shock. Eur J Clin Invest 1991;21:559-73.
  • 49. Vallance P, Moncado S. Role of endogenous nitric oxide in septic shock. New Horizons 1993;1:77-86.
  • 50. Bone RC. Sepsis syndrome: New insights into its pathogenesis and treatment. Infect Dis Clin North Am 1991;793-805.