Eklemeli İmalat Yöntemiyle Tekne İnşaatında Dolgu Yoğunluğu ve Örüntüsünün Mukavemet Üzerindeki Bileşik Etkisi

Prototip ve ürün üretim hızı, tasarımcılara sağladığı form geliştirme özgürlüğü, görece düşük kapasitedeki üretim ihtiyaçları için rekabetçi maliyeti, iyi kaliteye hızlı ulaşım olanaklarıyla, bilgisayar destekli tasarım ve üç boyutlu yazıcı teknolojisi temelindeki eklemeli imalat yöntemi, denizcilik endüstrisini de kapsayacak şekilde yaygın bir ilgi görmektedir. Bu ilginin temel kanıtı, eklemeli imalat yöntemine ilişkin araştırma, geliştirme etkinlikleri ve bilimsel yayın sayılarındaki ciddi artıştır. Esnek tasarımların sıklıkla güncellenmesiyle rekabetçiliği sürdürülebilir kılınabilecek küçük tekne endüstrisinin anılan avantajları nedeniyle eklemeli imalat yöntemine yönelmesi kaçınılmazdır. Eklemeli imalat yöntemi, teknelerin tasarım ve üretim sürecini verimli kılmakla birlikte, bu yöntemden iyi sonuç alabilmek onun bileşenleri üzerinde uygulamayla elde edilmiş deneyimlere dayanan verileri gereksinir. Bu çalışma kapsamında eklemeli imalat yönteminin önemli bileşenlerinden dolgu yoğunluğu ve örüntüsünün nihai ürünün temel mekanik özelliklerinden çekme mukavemeti üzerindeki etkisi deneysel olarak incelenmiştir. Üç boyutlu yazım teknolojileri temelinde yaygın olarak kullanılan polimerlerden polilaktik asitin (PLA) 13 farklı basım örüntüsü ve %10, 25, 50, 75 ve 100 olmak üzere beş farklı dolgu yoğunluğundan oluşan deney matrisi uyarınca çekme deneyleri Dokuz Eylül Üniversitesi (DEÜ) Kompozit Laboratuvarı’nda yapılmıştır. Sonuçlar, mekanik niteliklerin üzerinde durulan parametrelere çok duyarlı olduğu, “kübik” örüntünün incelenen yoğunluklarda genel olarak en iyi mekanik niteliklere ulaşmakta etkin olduğunu göstermiştir. Bu örüntü ve %25 yoğunluktan yararlanılarak 1/5 ölçeğinde bir yelkenli tekne gövdesi PLA polimer kullanılarak eklemeli imalat yöntemiyle DEÜ Deniz Bilimleri ve Teknolojileri Eklemeli imalat Laboratuvarı’nda üretilmiştir.

The Effects of Infill Density and Pattern on the Strength of Marine Small Craft Building by Additive Manufacturing Method

The additive manufacturing method based on computer-aided design and three-dimensional printing technology, its speed, design freedom provided for the designers, the cost-effectiveness and competitive for relatively low-capacity production needs, the possibilities of achieving good quality; has gained a popularity with the industries, including the maritime sector. The main proof of this interest is the significant increase in the number of research and development activities and scientific publications on this topic. Due to above mentioned advantages, it is inevitable for the small-marine craft industry, whose competitiveness can be made sustainable by frequently updating flexible designs, to adopt their technology to the additive manufacturing method. While it makes the design and manufacturing process of boats efficient, for getting more effective results; it requires past driven data approach on practical experience. In this study, the effect of infill density and pattern, which are important parameters of the additive manufacturing method, on the tensile strength of the final product's basic mechanical properties was investigated experimentally. Tensile tests with 13 different printing patterns and 5 different infill densities of polylactic acid (PLA), one of the polymers widely used based on three-dimensional printing technologies, and a test matrix consisting of five different filling densities as 10%, 25%, 50%, 75% and 100%, were performed in Dokuz Eylul University’s (DEU) Composite Laboratory. The results showed that the mechanical properties were very sensitive to these parameters, and the cubic pattern was generally effective in achieving the best mechanical properties at the investigated densities. Using this pattern and 25% density, sailboat hull with a scale of 1/5 was produced in DEU Institute of Marine Sciences and Technologies Additive Manufacturing Laboratory, using PLA polymer by additive manufacturing.

___

  • Aloyaydi, B., Sivasankaran, S., Mustafa, A. (2020). Investigation of infill-patterns on mechanical response of 3D printed polylactic-acid. Polymer Testing, 87. https://doi.org/10.1016/j.polymertesting.2020.106557
  • American Society for Testing and Materials, (2016), Standard Practice for Preparation of Metallographic Specimens, ASTM International, 82(C), 1–15., doi: 10.1520/D0638-14.1.
  • Bekker, M., Verlinden, C., Galimberti, G. (2017). Challenges In Assessıng The Sustaınabılıty Of Wıre + Arc Addıtıve Manufacturıng For Large Structures., Solid Freeform Fabrication Symposium,
  • Colorado, H. A., Velásquez, G., Monteiro, N. (2020). Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives. Journal of Materials Research and Technology, 9(4), 8221–8234. https://doi.org/10.1016/j.jmrt.2020.04.062
  • Delgado, D., Clayton, P., O’Brien, W. , Seepersad, C., Juenger, M., Ferron, R., Salamone, S. (2018). Applications of additive manufacturing in the construction industry – A forward-looking review. Automation in Construction, 89, 110–119. https://doi.org/10.1016/j.autcon.2017.12.031
  • Garmulewicz, A., Holweg, M., Veldhuis, H., Yang, A. (2018). Disruptive Technology as an Enabler of the Circular Economy: What Potential Does 3D Printing Hold? California Management Review, 60(3), 112–132. https://doi.org/10.1177/0008125617752695
  • Güngör, A., (2020). Türkiye’de Katmanlı İmalat ve Gemi İnşaatı Üzerine Etkileri, Gemi ve Deniz Teknolojisi Dergisi, 218, 36 – 53.
  • Heras, D., Genedy, M., Reda Taha, M. M. (2020). Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete. Construction and Building Materials, 262. https://doi.org/10.1016/j.conbuildmat.2020.120559
  • Kariz, M., Sernek, M., Obućina, M., Kuzman, K. (2018). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14, 135–140. https://doi.org/10.1016/j.mtcomm.2017.12.016
  • Khoo, X., Teoh, J., Liu, Y., Chua, C., Yang, S., An, J., Leong, K., Yeong, Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10(3), 103–122. https://doi.org/10.1080/17452759.2015.1097054
  • Kumar, R., Kumar, M., Chohan, S. (2021). The role of additive manufacturing for biomedical applications: A critical review. In Journal of Manufacturing Processes, 64, 828–850. https://doi.org/10.1016/j.jmapro.2021.02.022
  • Duigou, A., Correa, D., Ueda, M., Matsuzaki, R.,Castro, M. (2020). A review of 3D and 4D printing of natural fibre biocomposites. In Materials and Design, 194, https://doi.org/10.1016/j.matdes.2020.108911
  • Lubombo, C., Huneault, A. (2018). Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. Materials Today Communications, 17, 214–228. https://doi.org/10.1016/j.mtcomm.2018.09.017
  • Ma, Q., Rejab, M. R. M., Kumar, A. P., Fu, H., Kumar, N. M., Tang, J. (2021). Effect of infill pattern, density and material type of 3D printed cubic structure under quasi-static loading. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(19), 4254–4272. https://doi.org/10.1177/0954406220971667
  • Mohamed, A., Masood, H., Bhowmik, L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 3(1), 42–53. https://doi.org/10.1007/s40436-014-0097-7
  • Momeni, M., Mehdi, N., Liu, X., Ni, J. (2017). A review of 4D printing. Materials and Design, 122, 42–79. https://doi.org/10.1016/j.matdes.2017.02.068
  • Şükrü, O., T., Şener, B. (2019). The Use of Additive Manufacturing in Maritime Industry. International Journal of Engineering Trends and Technology, 67(6). http://doi.org/ 10.14445/22315381/IJETT-V67I6P209
  • Pandzic, A., Hodzic, D., Milovanovic, A. (2019). Effect of infill type and density on tensile properties of pla material for fdm process., Proceedings of the International DAAAM Symposium, 30(1), 545–554. https://doi.org/10.2507/30th.daaam.proceedings.074
  • Sharma, K., Srinivas, G. (2020). Flying smart: Smart materials used in aviation industry. Materials Today: Proceedings, 27, 244–250. https://doi.org/10.1016/j.matpr.2019.10.115
  • Shie, M. Y., Shen, Y. F., Astuti, S. D., Lee, A. K. X., Lin, S. H., Dwijaksara, N. L. B., Chen, Y. W. (2019). Review of polymeric materials in 4D printing biomedical applications. In Polymers., 11(11). https://doi.org/10.3390/polym11111864
  • Srinivasan, R., Nirmal Kumar, K., Jenish Ibrahim, A., Anandu, K., Gurudhevan, R. (2020). Impact of fused deposition process parameter (infill pattern) on the strength of PETG part. Materials Today: Proceedings, 27, 1801–1805. https://doi.org/10.1016/j.matpr.2020.03.777
  • Strickland, J., Strickland, D. (2016). Applications of Additive Manufacturing in the Marine Industry. Practical Design of Ships and Offshore Structures, https://doi.org/10.13140/RG.2.2.29930.31685
  • Wang, B., Zhang, Z., Pei, Z., Qiu, J., Wang, S. (2020). Current progress on the 3D printing of thermosets. Advanced Composite Hybrid Materials, 3, 462–472 https://doi.org/10.1007/s42114-020-00183-z
  • Wohlers, T., Gornet, T. (2016). History of Additive Manufacturing, Wohlers Report, 2-28.
  • Zhou, Y., Huang, W. M., Kang, S. F., Wu, X. L., Lu, H. B., Fu, J., Cui, H. (2015). From 3D to 4D printing: approaches and typical applications. Journal of Mechanical Science and Technology, 29(10), 4281–4288. https://doi.org/10.1007/s12206-015-0925-0
  • https://composites.umaine.edu/3dirigo-the-worlds-largest-3d-printed-boat/ [Online] [Erişim 10.05.2022]
  • https://www.polimi.it/en/articles/mambo-the-worlds-first-3d-printed-fiberglass-boat/ [Online] [Erişim 10.05.2022]
  • https://www.ramlab.com/updates/ramlab-unveils-worlds-first-class-approved-3d-printed-ships-propeller/ [Online] [Erişim 10.05.2022]