Denizaltılarında Havadan Bağımsız Tahrik Sistemi Olarak Kullanılan MESMA Sisteminin Termodinamik Performans Analizi

Dünya genelinde, denizlerin sualtı stratejik gücü, gün geçtikçe daha da önemli bir hale gelmektedir. Bu nedenle deniz kuvvetlerinin stratejik düşüncesinde denizaltıların yeri ve önemi gün geçtikçe artmaktadır. Denizaltılar birçok kişi tarafından en gelişmiş ve güçlü savaş araçları olarak kabul edilir. Denizlerde yeni güç odakları ve tehditlerin oluşması nedeni ile ülkelerin sualtı savaş platformlarına ilgileri artmıştır. Bu yüzden günümüzde gelişmiş, yüksek kabiliyetli denizaltılar için büyük yatırımlar yapılmaktadır. Bu çalışmada, denizaltılarında havadan bağımsız tahrik sistemi olarak kullanılan MESMA sisteminin termodinamik performans analizi yapılmıştır. İlk olarak MESMA sisteminin çalışma prensibi gösterilmiştir. MESMA sistemini oluşturan bileşenlerin enerji ve ekserji hesaplamaları yapılmıştır. MESMA sisteminin birincil ve en önemli bölümü olan yanmanın olduğu kısımda detaylı yanma analizi yapılmıştır. Sistemde aktif olarak kullanılmış metanol ve etanol yakıtlarının yanma ürünleri ve yanma ekserjisi, %21 ve %25 oksijen oranlı yanmalardaki sonuçları ile kıyaslanmıştır. Tüm sistemin elde edilen net güç değerleri etanol ve metanol yakıtlarının üç farklı oksijen oranına göre yanması, ekivalans oranı ve yanma odası giriş sıcaklığının değişimi ile sunulmuştur. Net güç bakımından etanol ile metanol yanmasının 10 ile 50 kW arasında bir farkla sonuçlandığı tespit edilmiştir. Yanmadaki oksijen oranının artması ile elde edilen gücün arttığı gösterilmiştir. Ayrıca yanma odası giriş sıcaklığı arttıkça sistem gücü artmıştır. Elde edilen güçler yakın olmasına rağmen verim bakımından incelendiğinde, metanol yanmasının etanol yanmasından belirgin bir fazlalığı olduğu sonucuna ulaşılmıştır. Verim açısından iki yakıt arasında 5 puanlık fark oluşmuştur. Ayrıca ekolojik performans katsayısı (Ecological coefficient of performance/ECOP) yönünden incelenerek hangi şartlarda daha çevre dostu performans elde edileceği gösterilmiştir. Ekolojik performans katsayısı (ECOP) ekivalans oranın 0,3’den 1’e kadar artması ile azalarak artan bir grafik çizmiştir. Ekivalans oranın 1’den 1,5’e bir miktar azaldıktan sonra yatay olarak devam etmiştir. Ekolojik performans katsayısı (ECOP) bakımından metanol yakıtının daha avantajlı olduğu ortaya koyulmuştur.

Thermodynamic Performance Analysis of the MESMA System Used as an Air-Independent Propulsion System in Submarines

Worldwide, the underwater strategic power of the seas is becoming more and more important day by day. Therefore, the place and importance of submarines in the strategic thinking of the navies are getting bigger and bigger. Submarines are considered as the most advanced and powerful combat vehicles. Due to the emergence of new power centers and threats on the seas, countries' interest in underwater warfare platforms has increased. For this reason, big investments are made in advanced, high-capability submarines. In this study, thermodynamic performance analysis of the MESMA system, which is used as an air-independent propulsion system in submarines, was made. First, the working principle of the MESMA system was shown. Energy and exergy calculations of the components that make up the MESMA system were made. A detailed combustion analysis was carried out in the part where the combustion, which is the primary and most important part of the MESMA system, takes place. Combustion products and combustion exergy of actively used methanol and ethanol fuels in the system were compared with their results in combustion with 21% and 25% oxygen ratios. The net power values of the whole system are presented by the combustion of ethanol and methanol fuels according to three different oxygen ratios, the variation of the equivalence ratio, and the combustion chamber inlet temperature. It has been found that the combustion of ethanol and methanol results in a difference between 10 and 50 kW in terms of net power. It has been shown that the power obtained increases with the increase of the oxygen ratio in the combustion. In addition, the system power increased as the combustion chamber inlet temperature increased. Although the obtained powers are close, it was concluded that methanol combustion has a significant excess of ethanol combustion when examined in terms of efficiency. There was a difference of 5 points between the two fuels in terms of efficiency. In addition, it has been examined in terms of ecological performance coefficient (ECOP) and it has been shown under which conditions a more environmentally friendly performance will be achieved. It has been demonstrated that methanol fuel is more advantageous in terms of ECOP.

___

  • Bedir F., Alniak M.O., 2004. Yakıt Pil Sistemlerinin ÇalıĢma Prensibi Ve Denizaltı Sistemlerdeki Tasarımı. Makine Teknolojileri Elektronik Dergisi 31–37.
  • Burcher, R., Rydill, L., 1994. Concepts in submarine design, Cambridge ocean technology series. Cambridge University Press, Cambridge [England] ; New York.
  • Edward C. Whitman, n.d. Air-Indipendent Propulsion. AIP Technology Creates a New Undersea Threat 1–6.
  • Ferguson CR., 1986. Internal combustion engines – applied thermosciences., New York: John Wiley&Sons Inc.; ed. Fiori, C., Dell’Era, A., Zuccari, F., Santiangeli, A., D’Orazio, A., Orecchini, F., 2015. Hydrides for submarine applications: Overview and identification of optimal alloys for air independent propulsion maximization. International Journal of Hydrogen Energy 40, 11879–11889.
  • G. Gonca, I. Ozsari, 2016. Exergetic Performance Analysis of a Gas Turbine with two Intercoolers and two Reheaters Fuelled with Different Fuel Kinds. CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING ISTANBUL 2016.
  • Gonca, G., Genc, I., 2019. Thermoecology-based performance simulation of a Gas-Mercury-Steam power generation system (GMSPGS). Energy Conversion and Management 189, 91–104.
  • Han, Jaeyoung, Han, Jaesu, Ji, H., Yu, S., 2020. “Model-based” design of thermal management system of a fuel cell “air-independent” propulsion system for underwater shipboard. International Journal of Hydrogen Energy 45, 32449–32463.
  • https://klswatch.wordpress.com/2011/06/22/second-dcnss-mesma%C2%AE-aip-ready-for-shipment-to-pakistan/, n.d.
  • https://uboat.net/types/walter_hist.htm, n.d.
  • Kerros, P., Inizan, C., Grousset, D., 1994. MESMA: AIP system for submarines, in: Proceedings of OCEANS’94. Presented at the OCEANS’94, IEEE, Brest, France, p. III/457-III/466. https://doi.org/10.1109/OCEANS.1994.364242
  • Lee J.-C., Shay T., 2018. ANALYSIS OF FUEL CELL APPLIED FOR SUBMARINE AIR INDEPENDENT PROPULSION (AIP) SYSTEM. Journal of Marine Science and Technology 26, 657–666.
  • Lefebvre, A.H., Ballal, D.R., 2010. Gas turbine combustion alternative fuels and emissions. Taylor & Francis, Boca Raton [u.a.
  • Menon, R.R., Vijayakumar, R., Pandey, J.K., 2020. Selection of Optimal Air Independent Propulsion System using Forced Decision Matrix. Def. Sc. Jl. 70, 103–109.
  • Mohammed Shibil Kurikkal, 2016. Air Independent Propulsion; Silent Submarines with Stirling Engines. International Journal of Engineering Research & Technology (IJERT) 5, 240.
  • Ozsari, I., Ust, Y., 2019. Effect of varying fuel types on oxy‐combustion performance. Int J Energy Res er.4868.
  • Ozsari, I., Ust, Y., Kayadelen, H.K., 2021. Comparative Energy and Emission Analysis of Oxy-Combustion and Conventional Air Combustion. Arab J Sci Eng 46, 2477–2492.
  • Ozturan, H., 2017. IdeaLab’dan Sessiz Denizaltılar için Devrim Yaratacak Teknoloji: sCO2 Brayton Güç Çevrimi. MSI IDEF 172.
  • Park, E.-Y., Choi, J., 2020. The Performance of Low-Pressure Seawater as a CO2 Solvent in Underwater Air-Independent Propulsion Systems. JMSE 8, 22.
  • Persson, O., Östberg, C., Pagels, J., Sebastian, A., 2006. Air contaminants in a submarine equipped with air independent propulsion. J. Environ. Monit. 8, 1111–1121.
  • Peter L. Mart, Jenny Margeridis, 1995. Fuel Cell Air Independent Propulsion of Submarines. DSTO Aeronautical and Maritime Research Laboratory, Avusturalya DSTO-GD-0042.
  • Pommer, H., Hauschildt, P., Teppner, R., Hartung, W., 2006. Air-independent propulsion system for submarines. ThyssenKrupp techforum 64–69.
  • Psallidas, K., Whitcomb, C.A., Hootman, J.C., 2010. Design of Conventional Submarines with Advanced Air Independent Propulsion Systems and Determination of Corresponding Theater-Level Impacts: Design of Conventional Submarines. Naval Engineers Journal 122, 111–123.
  • Psoma, A., Sattler, G., 2002. Fuel cell systems for submarines: from the first idea to serial production. Journal of Power Sources 106, 381–383.
  • Rashad, M.I., Nada, S.A., 2021. Experimental and theoretical investigation on a proposed free piston Stirling engine with expansion bellow. Applied Thermal Engineering 182, 116071.
  • Raska, M., 2016. Diesel-Electric Submarine Modernization in Asia: The Role of Air-Independent Propulsion Systems, in: Bitzinger, R.A. (Ed.), Emerging Critical Technologies and Security in the Asia-Pacific. Palgrave Macmillan UK, London, pp. 91–106.
  • Turns, S.R., 2011. An introduction to combustion: concepts and applications, 3. ed. ed. McGraw-Hill, Boston.
  • Ust, Y., Sahin, B., Sogut, O.S., 2005. Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion. Applied Energy 82, 23–39.