New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals

New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals

In the paper, we introduce the class of trigonometrically convex functions and using the Hölder, Hölder-Işcan, Power-mean and Improved power-mean integral inequality together with an identity we establish some new inequalities of Ostrowski-type for functions whose second derivatives are trigonometrically convex which is a special case of h-convex functions. Some applications for special means are also given.

___

  • [1] Ostrowski, A., “Über Die Absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert”, Commentarii Mathematici Helvetici, 10(1): 226–227, (1938).
  • [2] Alomari, M., Darus, M., Dragomir, S.S., Cerone, P., “Ostrowski’s inequalities for functions whose derivatives are s-convex in the second sense”, Applied Mathematics Letters, 23(9): 1071-1076, (2010).
  • [3] Cerone, P., Dragomir, S.S., “Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions ”, Demonstratio Mathematica, 37(2): 299-308, (2004).
  • [4] Dragomir, S.S., “Some companions of Ostrowski’s inequality for absolutely continuous functions and applications”, Bulletin of the Korean Mathematical Society, 42(2): 213–230, (2005).
  • [5] Işcan, I., “Ostrowski type inequalities for functions whose derivatives are preinvex”, Bulletin of the Iranian Mathematical Society, 40(2): 373–386, (2014).
  • [6] Sarikaya, M.Z., “On the Ostrowski type integral inequality”, Acta Mathematica Universitatis Comenianae, 79(1): 129-134, (2010).
  • [7] Set, E., Ozdemir, M.E., Sarıkaya, M.Z., “New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications”, Facta Universitatis Series Mathematics and Informatics, 27(1): 67–82, (2012).
  • [8] Set, E., Ozdemir, M.E., Sarıkaya, M.Z., Akdemir, A.O., “Ostrowski-type inequalities for strongly convex functions”, Georgian Mathematical Journal, 25 (1): 109–115, (2018).
  • [9] Ozdemir, M.E., Kavurmacı, H., Set, E., “Ostrowski’s type inequalities for (α,m)-convex functions”, Kyungpook Mathematical Journal, 50(3): 371–378, (2010).
  • [10] Hadamard, J. “Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann”, Journal De Mathematiques Pures Et Appliquées, 58: 171-216, (1893).
  • [11] Kadakal, M., Kadakal, H., Iscan, I., “Some new integral inequalities for n-times differentiable s-convex functions in the first sense”, Turkish Journal of Analysis and Number Theory, 5(2): 63-68, (2017).
  • [12] Maden, S., Kadakal, H., Kadakal, M., Iscan, I., “Some new integral inequalities for n-times differentiable convex and concave functions”, Journal of Nonlinear Sciences and Applications, 10(12): 6141-6148, (2017).
  • [13] Varosanec, S., “On h-Convexity”, Journal of Mathematical Analysis and Applications, 326(1): 303-311, (2007).
  • [14] Kadakal, H., “Hermite-Hadamard type inequalities for trigonometrically convex functions”, Scientific Studies and Research, Series Mathematics and Informatic, 28(2): 19-28, (2018).
  • [15] Işcan, I., “New refinements for integral and sum forms of Hölder inequality”, Journal of Inequalities and Applications, 1: 1-11, (2019).
  • [16] Kadakal, M., Işcan, I., Kadakal, H., Bekar, K., “On improvements of some integral inequalities”, Researchgate, (2019). (Preprint) DOI: https://doi.org/10.13140/RG.2.2.15052.46724
  • [17] Set, E., Sarikaya, M.Z., Ozdemir, M.E., “Some Ostrowski’s type inequalities for functions whose second derivatives are s-convex in the second sense and applications”, Demonstratio Mathematica, 47(1): 37-47, (2014).

___

Bibtex @araştırma makalesi { gujs934699, journal = {Gazi University Journal of Science}, eissn = {2147-1762}, address = {}, publisher = {Gazi Üniversitesi}, year = {2023}, volume = {36}, number = {3}, pages = {1311 - 1324}, doi = {10.35378/gujs.934699}, title = {New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals}, key = {cite}, author = {Demir, Şenol and Maden, Selahattin} }
APA Demir, Ş. & Maden, S. (2023). New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals . Gazi University Journal of Science , 36 (3) , 1311-1324 . DOI: 10.35378/gujs.934699
MLA Demir, Ş. , Maden, S. "New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals" . Gazi University Journal of Science 36 (2023 ): 1311-1324 <
Chicago Demir, Ş. , Maden, S. "New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals". Gazi University Journal of Science 36 (2023 ): 1311-1324
RIS TY - JOUR T1 - New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals AU - ŞenolDemir, SelahattinMaden Y1 - 2023 PY - 2023 N1 - doi: 10.35378/gujs.934699 DO - 10.35378/gujs.934699 T2 - Gazi University Journal of Science JF - Journal JO - JOR SP - 1311 EP - 1324 VL - 36 IS - 3 SN - -2147-1762 M3 - doi: 10.35378/gujs.934699 UR - Y2 - 2022 ER -
EndNote %0 Gazi University Journal of Science New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals %A Şenol Demir , Selahattin Maden %T New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals %D 2023 %J Gazi University Journal of Science %P -2147-1762 %V 36 %N 3 %R doi: 10.35378/gujs.934699 %U 10.35378/gujs.934699
ISNAD Demir, Şenol , Maden, Selahattin . "New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals". Gazi University Journal of Science 36 / 3 (Eylül 2023): 1311-1324 .
AMA Demir Ş. , Maden S. New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals. Gazi University Journal of Science. 2023; 36(3): 1311-1324.
Vancouver Demir Ş. , Maden S. New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals. Gazi University Journal of Science. 2023; 36(3): 1311-1324.
IEEE Ş. Demir ve S. Maden , "New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals", , c. 36, sayı. 3, ss. 1311-1324, Eyl. 2023, doi:10.35378/gujs.934699
Gazi University Journal of Science
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Gazi Üniversitesi

118.4b14.5b

Sayıdaki Diğer Makaleler

Effect of Wall Colors and Usage Rates on The Perception of Interior Spaces

Kübra AKSOY ÖZLER, M. Lütfi HİDAYETOĞLU, Kemal YILDIRIM

The Comparison of Classical and Bayesian Structural Equation Models Through Ordered Categorical Data: A Case Study of Banking Service Quality

Gizem ERKAN, Murat DOĞAN, Hüseyin TATLIDİL

A Comparative Study on Denoising from Facial Images Using Convolutional Autoencoder

Muazzez Buket DARICI, Zeki ERDEM

The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA

Ali ARSLANTAS, Mehmet Salih AĞIRTAŞ

Comparison of the Performance of Solar Panels Designed in Three Different Ways under the Same Conditions

Mehmet Ali SALDAMLI, Yusuf Alper KAPLAN, Gülizar Gizem ÜNALDI

Synchronization Analysis of a Master-Slave BEC System via Active Control

Eren TOSYALI, Fatma AYDOĞMUŞ

Indoor Lighting Conversion Approach for Sustainable Energy Efficiency Applications in Campus Buildings: Hitit University Engineering Faculty Study

Sertac Samed SEYITOGLU, Ömer Faruk TOZLU, Emir AVCIOĞLU

Determination freeze-drying characteristics of ottoman strawberries

Bahadir ACAR, Abdullah DAĞDEVİREN, Büşra Meryem YILDIZ, Prof. Dr. Mehmet ÖZKAYMAK

Characterization of Divalent Metal Soaps of Cannabis Sativa Seed Oil

Senem YETGİN, Theresa O. EGBUCHUNAM, Felix OKİEİMEN, Kutalmış GÖKKUŞ, Kerim GÜNEY

An Analysis of DoS Attack on Robot Operating System

Elif DEĞİRMENCİ, Yunus Sabri KIRCA, Esra N. YOLAÇAN, Ahmet YAZİCİ