The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA

The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA

Nickel phthalocyanine complex containing 3-methoxybenzoic acid groups was acquired and specified by way of Fourier Transform Infrared, NMR and UV-Visble spectroscopy procedures. Interaction of PcNi with the DNA molecule was examined via electronic absorption spectra, fluorescence spectra, melting point, viscosity, and the electrophoresis technics, respectively. The interaction activity of PcNi against the DNA was examined by way of absorption spectra titrations and the fluorescence spectra, farther by conducting melting point, viscosity procedures in the buffer of a pH 7.02. The obtained outcomes from these methods demonstrated that PcNi indicated substantial binding affinity to the DNA via intercalating by Kb of 1.31 x 106 m-1. Further, the interacting activity of PcNi on the DNA was analyzed by which electrophoresis technique and this procedure indicated that PcNi complex exhibits strong binding affinity on the DNA.

___

  • [1] Yılmaz, F., Ozer, M., Kani, I., Bekaroglu, O., “Catalytic activity of a thermoregulated, phase-separable Pd(II)-perfluoroalkyl phthalocyanine complex in an organic/fluorous biphasic system: hydrogenation of olefins”, Catalysis Letters, 130: 642-647, (2009).
  • [2] Leznoff, C.C., Lever, A.B.P., “Phthalocyanines properties and applications”, VCH Publisher, New York, Vol. 2, (1993).
  • [3] Leznoff, C.C., Lever, A.B.P., “Phthalocyanines Properties and Applications”, VCH Publisher, New York, Vol. 1, (1989).
  • [4] Parra, V., Bouvet, M., Brunet, J., Rodríguez-Mendez, M.L., Saja, J.A., “On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bis-phthalocyanine thin films”, Thin Solid Films, 516: 9012-9019, (2008).
  • [5] Al-Raqa, S.Y., Khezami, K., Kaya, E.N., Durmus, M., “A novel water soluble axially substituted silicon(IV) phthalocyanine bearing quaternized 4-(4-pyridinyl)phenol groups: Synthesis, characterization, photophysicochemical properties and BSA/DNA binding behavior”, Polyhedron, 194: 114937, (2021).
  • [6] Rosenthal, I., “Phthalocyanines as photodynamic sensitizer”, Photochemistry and Photobiology, 53: 859-870, (1991).
  • [7] Leznoff, C.C., Lever A.B.P., “Phthalocyanines, properties and applications”, VCH Publisher, New York, (1996).
  • [8] Hadjiliadis, N.D., Sletten, E., “Metal complex–DNA interactions”, Wiley-Blackwell, New York, (2009).
  • [9] Van Holst, M., Grant, M.P., Aldrich-Wright, J., “Metallointercalators-synthesis and techniques to probe their interactions with biomolecules”, Springer, Wien, New York, (2011).
  • [10] Lukyanets, E.A., “Phthalocyanines as photosensitizers in the photodynamic therapy of cancer”, Journal of Porphyrins and Phthalocyanines, 3: 424–432, (1999).
  • [11] Vummidi, B.R., Noreen. F., Alzeer J., Moelling, K., Luedtke, N.W., “Photodynamic agents with anti-metastatic activities”, ACS Chemical Biology, 8: 1737–1746, (2013).
  • [12] Yildiz, B.T., Sezgin, T., Cakar, Z.P., Uslan, C., Sesalan, B.S., “The use of novel photo bleachable phthalocyanines to image DNA”, Synthetic Metals, 161: 1720–1724, (2011).
  • [13] Amitha, G.S., Vasudevan, S., “DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine”, Polyhedron, 175: 114208, (2020).
  • [14] Ali, A., Bhattacharya, S., “DNA binders in clinical trials and chemotherapy”, Bioorganic Medicinal Chemistry, 22: 4506–4521, (2014).
  • [15] Alam, M.D.F., Varshney, S., Khan, M.A., Laskar, A.A., Younus, H., “In vitro DNA binding studies of therapeutic and prophylactic drug citral”, International Journal of Biological Macromolecules, 113: 300–308, (2018).
  • [16] Palchaudhuri, R., Hergenrother, P.J., “DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action”, Current Opinion in biotechnology, 18: 497–503, (2007).
  • [17] Bağda, E., Yabaş, E., Bağda, E., “Analytical approaches for clarification of DNA-double decker phthalocyanine binding mechanism: As an alternative anticancer chemotherapeutic”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 172: 199–204, (2017).
  • [18] Rescifina, A., Zagni, C., Varrica, M.G., Pistarà, V., Corsaro, A., “Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling”, European Journal of Medicinal Chemistry, 74: 95–115, (2014).
  • [19] Ozluer, C., Satana Kara, H.E., “In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques”, Journal of photochemistry and photobiology B Biology, 138: 36–42, (2014).
  • [20] Williams, A.K., Dasilva, S.C., Bhatta, A., Rawal, B., Liu, M., Korobkova, E.A., “Determination of the drug-DNA binding modes using fluorescence-based assays”, Analytical Biochemistry, 411: 66–73, (2012).
  • [21] Özkay, Y., Işıkdağ, İ., İncesu, Z., Akalın, G., “Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity”, European Journal of Medicinal Chemistry, 45: 3320–3328, (2010).
  • [22] Uslan, C., Sesalan, B.Ş., “The synthesis, photochemical and biological properties of new silicon phthalocyanines”, Inorganica Chimica Acta, 394: 353–362, (2013).
  • [23] Ballı, Z., Arslantaş, A., Solğun Güngördü, D., Ağırtaş, M.S., “DNA binding studies of the 2,10,16,24–tetrakis (phenoxy-3-methoxybenzoic acid) phthalocyaninato) Co(II) and Cu(II) compounds”, Springer Nature Applied Sciences, 2: 844-853, (2020).
  • [24] Barone, G., Terenzi, A., Lauria, A., Almerico, A.M., Leal, J.M., Busto, N., García, B., “DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships”, Coordination Chemistry Reviews, 257 (19–20): 2848-2862, (2013).
  • [25] Wolfe, A., Shimer, G.H., Meehan, T., “Polycyclic aromatic hydrocarbons physically intercalate into regions of denatured DNA”, Biochemistry, 26: 6392–6396, (1987).
  • [26] Liu, X.W., Shen Y.M., Li, Z.X., Zhong, X., Chen, Y.D., Zhang, S.B., “Study on DNA binding behavior and light switch effect of new coumarin-derived Ru (II) complexes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149: 150–156, (2015).
  • [27] Barton, J.K., Goldberg, J.M., Kumar, C.V., Turro, N.J., “Binding modes and base specificity of tris(phenanthroline)ruthenium (II) enantiomers with nucleic acids: tuning the stereoselectivity”, Journal of American Chemical Society, 108: 2081–2088, (1986).
  • [28] Amitha, G.S., Vasudevan, S., “DNA binding and cleavage studies of novel Betti base substituted quaternary Cu (II) and Zn (II) phthalocyanines”, Polyhedron, 190: 114773, (2020).
  • [29] López Zeballos, N.C., Gauna, G.A., García Vior, M.C., Awruch, J., Dicelio, L.E., “Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents”, Journal of Photochemistry and Photobiology B: Biology, 136: 29-33, (2014).
  • [30] Barut, B., Yalçın, C.Ö., Sari, S., Çoban, Ö., Keleş¸ T., Biyiklioglu, Z., Abudayyak, M., Demirbaş, Ü., Özel, A., “Novel water soluble BODIPY compounds: Synthesis, photochemical, DNA interaction, topoisomerases inhibition and photodynamic activity properties”, European Journal of Medicinal Chemistry, 183: 111685, (2019).
  • [31] Çoban, Ö., Barut, B., Yalçın, C.Ö., Özel, A., Biyiklioglu, Z., “Development and in vitro evaluation of BSA-coated liposomes containing Zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer”, Journal of Organometallic Chemistry, 925: 121469, (2020).
  • [32] Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B., “Neither.DELTA.- nor.LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation”, Biochemistry, 31: 9319–9324, (1992).
  • [33] Ji, L.N., Zou, X.H., Liu, J.G., “Shape- and enantioselective interaction of Ru (II)/Co (III) polypyridyl complexes with DNA”, Coordination Chemistry Reviews, 216–217: 513– 536, (2001).
Gazi University Journal of Science-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1988
  • Yayıncı: Gazi Üniversitesi, Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Characterization of Divalent Metal Soaps of Cannabis Sativa Seed Oil

Senem YETGİN, Theresa O. EGBUCHUNAM, Felix OKİEİMEN, Kutalmış GÖKKUŞ, Kerim GÜNEY

A Systematic Review of Transfer Learning-Based Approaches for Diabetic Retinopathy Detection

Burcu OLTU, Büşra Kübra KARACA, Hamit ERDEM, Atilla ÖZGÜR

A Fuzzy Logic Approach and Path Algorithm for Time and Energy Management of Smart Cleaning Robots

Hakan ŞİMŞEK, Faize Nur ERTÜRK, Recep ŞEKER

A Comparative Assessment of Five Different Distributions Based on Five Different Optimization Methods for Modeling Wind Speed Distribution

Mohammed WADİ, Wisam ELMASRY

Traffic Flow Pattern Based Approach to Predict Real Driving Emission Test Routes

Muhammet AYDIN, Cem SORUŞBAY, Hikmet ARSLAN

Comparison of the Performance of Solar Panels Designed in Three Different Ways under the Same Conditions

Mehmet Ali SALDAMLI, Yusuf Alper KAPLAN, Gülizar Gizem ÜNALDI

Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films

Neslihan AKCAY, Berkcan ERENLER, Yunus ÖZEN, Valery GREMENOK, Konstantin Pavlovich BUSKIS, Süleyman ÖZÇELİK

New Ostrowski Type Inequalities for Trigonometrically Convex Functions Via Classical Integrals

Şenol DEMİR, Selahattin MADEN

The Comparison of Classical and Bayesian Structural Equation Models Through Ordered Categorical Data: A Case Study of Banking Service Quality

Gizem ERKAN, Murat DOĞAN, Hüseyin TATLIDİL

Dynamics of Web 2.0: A Software Application "Web 2.0 Meter"

Cem Ufuk BAYTAR