Integral Fuzzy Sliding Mode Controller for Hydraulic System Using Neural Network Modelling

Integral Fuzzy Sliding Mode Controller for Hydraulic System Using Neural Network Modelling

In this paper, a hydraulic motor controller is designed with a fuzzy supported integral sliding mode algorithm. The hydraulic system used in the study was modeled using artificial neural networks. Ability of handling nonlinearity of systems makes sliding mode controller to be a good choose for this system. The integral sliding mode controller can supply the robustness the system against the uncertainties. The basic idea of the proposed control method is to use fuzzy logic for the adaptation of the integral sliding mode control switching gain. Such adjustment reduces the chattering that is the most problem of classical sliding mode control. The equivalent control is computed using the radial basis function neural network. Simulation results of the presented method were compared with conventional PID controller results. It proved that it is more efficient to control the hydraulic system with integral fuzzy sliding mode control using neural network.

___

  • [1] Wang, C., Quan, L., Jiao, Z., Zhang, S., “Nonlinear Adaptive Control of Hydraulic System with Observing and Compensating Mismatching Uncertainties”, IEEE Transactions on Control Systems Technology, 26(3): 1-12, (2017).
  • [2] Shol, G. A., Bobrow, J. E., “Experimental and simulations on the nonlinear control of a hydraulic servo system”, IEEE Transactions on Control Systems Technology, 7(1): 238–247, (1999).
  • [3] Liu, G. P., Daley, G. P., “Optimal-tuning nonlinear PID control of hydraulic systems”, Control Engineering Practice, 8(9): 1045–1053, (2000).
  • [4] Guo, K., Wei, J., Fang, J., Wang, X., “Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer”, Mechatronics, 27: 47-56, (2015). DOI: 10.1016/j.mechatronics.2015.02.003
  • [5] Tri, N. M., Nam, D. N. C., Park, H.G., Ahn, K. K., “Trajectory control of an electro hydraulic actuator using an iterative backstepping control scheme”, IEEE Transactions on Control Systems Technology, Mechatronics, 29: 96–102, (2015).
  • [6] Alleyne, A., Liu, R., “A simplified approach to force control for electrohydraulic systems”, Control Engineering Practice, 8(12): 1347–1356, (2000). DOI: 10.1016/S0967-0661(00)00081-2
  • [7] Yao, B., Bu, F., Chiu, G. T. C., “Nonlinear adaptive robust control of electrohydraulic servo systems with discontinuous projections”, Proceedings of the IEEE Conference on Decision and Control, Tampa (USA), 2: 2265–2270, (1998).
  • [8] Deticek E., “A fuzzy self learning position control of hydraulic drive”, Cybernetic Systems, 31 (8): 821–836, (2000). DOI: /10.1080/019697200750038959
  • [9] Kalyoncu, M., Haydim, M., “Mathematical modelling and fuzzy logic based position control of an electrohydraulic servo system with internal leakage”, Mechatronics, 19(6): 847–858, (2009). DOI: https://doi.org/10.1016/j.mechatronics.2009.04.010
  • [10] Çetin, Ş., Akkaya, A. V., “Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system”, Nonlinear Dynamics, 61: 465–476, (2010).
  • [11] Knohl, T., Unbehauen H., “Adaptive position control of electrohydraulic servo systems using ANN”, Mechatronics, 10(1-2): 127–143, (2000).
  • [12] Hasanifard, G., Zarif, M.H., Ghareveisi, A.A., “Nonlinear Robust Backstepping Control of an Electrohydraulic Velocity Servosystem”, Mediterranean Conference on Control and Automation, 27-29, (2007).
  • [13] Bonchis, A., Corke, P. I., Rye D. C., Ha Q. P., “Variable structure methods in hydraulic servo systems control”, Automatica, 37(4): 589–595, (2001). DOI: 10.1007/s11771-008-0048-1
  • [14] Liu, Y., Handroos, H., “Technical note sliding mode control for a class of hydraulic position servo”, Mechatronics, 9(1): 111–123, (1999).
  • [15] Yang, L., Yang, S., Burton, R., “Modelling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system”, IEEE/ASME Transaction Mechatronics, 18(1): 1–10, (2013).
  • [16] Tang, R., Zhang, Q., “Dynamic sliding mode control scheme for electro-hydraulic position servo system”, Procedia Engineering, 24: 28–32, (2011). DOI: 10.1016/j.proeng.2011.11.2596
  • [17] Cerman, O., Petr, H., “Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism”, Expert Systems with Applications, 39(11): 10269–10277, (2012).
  • [18] Guan, C., Pan, S., “Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters”, Elsevier Control Engineering Practice, 16(11): 1275–1284, (2008).
  • [19] Wu, B., Dong, Y., Wu, S., Xu, D., Keding, Z., “An Integral Variable Structure Controller with Fuzzy Tuning Design for Electro-hydraulic Stewart Platform”, 1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin (China), 941-945, DOI: 10.1109/ISSCAA.2006.1627480 (2006).
  • [20] Yılmaz, E., “Modelling a Hydraulic System Using Artificial Neural Networks and Controlling with PID Algorithm Coefficients Optimized by Genetic and Particle Swarm Algorithms”, Master Thesis, Marmara University Institute of Science and Technology, Istanbul, 27-28, (2012).
  • [21] Yılmaz, E., Topuz, V., Baba, A.F., “Modeling of a Hydraulic System with ANN and Control with GA-PID and PSO-PID”, Automatic Control National Meeting, Malatya, 842-847, (2013).
  • [22] Utkin, V.I., “Variable Structure Systems with Sliding Modes”, IEEE Transaction on Automatic Control, 22(2): 212-222, (1977).
  • [23] Edwards, C., Spurgeon, K., Sliding Mode Control, First Edition, Taylor&Fransis Ltd., London, (1998).
  • [24] Bandyopadhyay, B., Kim, K., Deepak, F., Sliding Mode Control Using Novel Sliding Surfaces, First Edition, Springer-Verlag Berlin Heidelberg, Switzerland, (2009).
  • [25] Tsai, C., Chung, H., Yu, F., “Neuro-Sliding Mode Control with Its Applications to Seesaw Systems”, IEEE Transaction on Neural Networks, 15(1): 124-134, (2004).
  • [26] Kalayci, M.İ., Yiğit, İ., “Theoretical and Experimental Investigation of Some Sliding Mode Control Techniques Used in Practice”, Journal of the Faculty of Engineering and Architecture of Gazi University, 3(1): 131–142, (2015).
  • [27] Utkin, V.I., Shi, J., “Integral sliding mode in systems operating under uncertainty conditions”, Proceedings of the 35th Conference on Decision and Control, Kobe (Japan), 4591–4596, (1996).
  • [28] Zadeh, L. A., “Outline of a new approach to the analysis of complex systems and decision processes”, IEEE Transaction System Man Cybernetics, 3(1): 28–44, (1973).
  • [29] Mamdani, E.H., Assilian, S., “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man-Machine Studies, 7(1): 1-13, (1975).
  • [30] Huang, S., Huang, K., Chiou, K., “Development and Application of a Novel Radial Basis Function Sliding Mode Controller”, Mechatronics, 13(4): 313–329, (2001).
  • [31] Azeem, M.F., Hanmandlu, M., Ahmad N., “Generalization of Adaptive Neuro-Fuzzy Inference Systems”, IEEE Transaction on Neural Networks, 11(6): 1332–1346, (2000).
  • [32] Ak, A., Cansever, G., Delibaşı, A., “Robot Trajectory Tracking with Adaptive RBFNN Based Fuzzy Sliding Mode Control”, Information Technology and Control, 40(2): 151–156, (2011). DOI: http://dx.doi.org/10.5755/j01.itc.40.2.430
Gazi University Journal of Science-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1988
  • Yayıncı: Gazi Üniversitesi, Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

A Fuzzy Logic Approach and Path Algorithm for Time and Energy Management of Smart Cleaning Robots

Hakan ŞİMŞEK, Faize Nur ERTÜRK, Recep ŞEKER

A Systematic Review of Transfer Learning-Based Approaches for Diabetic Retinopathy Detection

Burcu OLTU, Büşra Kübra KARACA, Hamit ERDEM, Atilla ÖZGÜR

Characterization of Divalent Metal Soaps of Cannabis Sativa Seed Oil

Senem YETGİN, Theresa O. EGBUCHUNAM, Felix OKİEİMEN, Kutalmış GÖKKUŞ, Kerim GÜNEY

3D Stochastic Network Modeling and Investigation of Network Size Effect on the Porous Media Structure of Ion Exchange Catalyst Amberlyst-35 with Computer Programs

Veli ŞİMŞEK, Kırali MURTEZAOĞLU

Synchronization Analysis of a Master-Slave BEC System via Active Control

Eren TOSYALI, Fatma AYDOĞMUŞ

Rotor Field-Oriented Control of Doubly Fed Induction Generator in Wind Energy Conversion System

Zeki OMAÇ, İrfan ERDEM

Indoor Lighting Conversion Approach for Sustainable Energy Efficiency Applications in Campus Buildings: Hitit University Engineering Faculty Study

Sertac Samed SEYITOGLU, Ömer Faruk TOZLU, Emir AVCIOĞLU

Numerical Analysis of Air Flow in an Industrial Refrigeration System and Its Effect on Energy Consumption

Serhat KARYEYEN, Mustafa AKTAŞ, Alperen OKUR, Fatma Nur ERDOĞMUŞ

Lumbar Spinal Stenosis Analysis with Deep Learning Based Decision Support Systems

Sinan ALTUN, Ahmet ALKAN

A Comparative Assessment of Five Different Distributions Based on Five Different Optimization Methods for Modeling Wind Speed Distribution

Mohammed WADİ, Wisam ELMASRY