Functorial properties of the sheaves of higher homotopy groups

$X_1$, $X_2$ irtibatlı, lokal eğrisel irtibatlı topolojik uzaylar,$H_{n_1}$ ve -$H_{n_2}$, de sırasıyla $X_1$ ve $X_2$, üzerinde Yüksek Homotopi Gruplarının Demetleri olsunlar. Eğer $(X_1,H_{n_1})$ ve $(X_2,H_{n_2})$ çiftleri arasında bir F = (f,f*) izomorfizmi varsa, bu taktirde $W_1,subset X_1$, herhangi bir açık cümle, $Gamma(W_1, H_{n_1})$ ve $Gamma(f(W_1), H_{n_2})$de, sırasıyla, $W_1$, ve $f(W_1)$ üzerinde $H_{n_1}$ ve $H_{n_2}$ nin kesitlerinin grupları olmak üzere $Gamma(W_1, H_{n_1})$, $Gamma(f(W_1), H_{n_2})$ ye izomorftur. Üstelik, çiftler ve izomorfizmleri kategorisinden gruplar ve izomorfizmleri kategorisine bir kovaryant funktor vardır

Yüksek homotopi gruplarının demetlerinin funktoryal özellikleri

Let $X_1$, $X_2$ be connected and locally path connected topological spaces, $H_{n_1}$ and $H_{n_2}$ be the sheaves of higher homotopy groups over $X_1$, $X_2$, respectively. If F = (f,f*) is an isomorphism between the pairs $(X_1,H_{n_1})$ and $(X_2,H_{n_2})$ then $Gamma(W_1, H_{n_1})$ is isomorphic to $Gamma(f(W_1), H_{n_2})$ for any $W_1,subset X_1$, open set, where $Gamma(W_1, H_{n_1})$ and $Gamma(f(W_1), H_{n_2})$ are the groups of sections of $H_{n_1}$ and $H_{n_2}$, over $W_1$, and $f(W_1)$, respectively. Moreover, there is a covariant functor from the category of pairs and isomorphisms to the category of groups and isomorphisms.

___

  • 1.Balcı, S., The Seifert- Van Kampen Theorem For the Group of Global Sections, Indian J. Pure Appl. Math., 27 (9), pp. 883-891,(1996).
  • 2.Canbolat, N., The Sheaf of Higher Homotopy Groups and Related Characterizations, Ph D. Thesis, Ankara University, (1982).
  • 3.Grauret, H.and Fritzsche, K., Several Complex Variables, Springer-Verlag, New York, (1976).
  • 4.Güner, E., The Sheaf H, of Higher Homotopy Groups as an Abelian Covering Space, Ph. D. Thesis, Ankara University, (1996).
  • 5.Güner, E., On The Generalized Whitney Sum of The Sheaves of Higher Homotopy Groups, Instute of Math, and Comp. Sci. (Math. Ser.), Vol 11, No.l, pp. 59-66 (1998).
  • 6.Hilton, P.J., An Introduction to Homotopy Theory, Cambridge University Press., Cambridge, (1961).