Effects of caffeine on oxidant-antioxidant mechanisms in the rat liver

Amaç: Kafein (1, 3, 7 trimetilksantin) bir pürin alkoloit olarak birçok yiyecek ve içeceklerin içeriğinde bulunur. Kahve, çay, çikolata, kola ve bazı gazlı içecekler kafein ihtiva eder. Biz çalışmamızın temel hedefi olarak, kısa süreli oral kafein alımının rat karaciğerinde olası antioksidan etkilerini iki farklı dozda araştırmaya çalıştık. Yöntemler: Kafein verilen ratların karaciğer dokularında lipit peroksidasyon ürünü olan MDA düzeylerini ölçtük. Bunun yanında kafeinin antioksidan özelliğini incelemek için, enzimatik ve non enzimatik antioksidan sistem üzerinde araştırmalar yaptık. Karaciğer dokularında SOD, katalaz, GPx, GST aktivitelerini ve GSH düzeylerini ölçtük. Çalışmamızda 30 adet (ortalama 250 gr ağırlığında) Wistar cinsi erkek rat kullanıldı. Ratlar üç eşit gruba ayrıldı. Grup 1: Kontrol grubuydu. Grup 2ye 30 mg/kg, Grup 3e 100 mg/kg (nontoksik yüksek doz) kafein 14 gün boyunca (kısa süreli) oral yol ile verildi. Bulgular: Çalışmamızın sonuçları, 14 gün düşük doz (30 mg/kg) ve toksik olmayan yüksek doz (100 mg/kg) kafein uygulamasının, karaciğerde lipit peroksidasyonununu azalttığını göstermektedir. Kafein alımıyla rat karaciğer dokusunda SOD, katalaz, GPx ve GST gibi antioksidan enzim aktivitelerinde ise istatistiksel olarak anlamlı artış saptanmıştır. Karaciğer dokusu glutatyon düzeyleri karşılaştırıldığında kontrol grubuna göre kafeinli gruplarda hafif artış tespit edilmiş, ancak gruplararasında istatistiksel olarak anlamlı fark bulunmamıştır. Spearman korelasyon analizi sonuçlarına göre doku MDA düzeyi azalırken, GPx, GST, SOD aktivitesi artmış ve güçlü negatif korelasyon görülmüştür. Doku GST aktivitesi ile doku katalaz aktivitesi arasında güçlü pozitif korelasyon bulunmuştur. Sonuç: Kafeinin bu dozlarda; lipit peroksidasyonunu azaltması, antioksidan enzim aktivitelerini artırması ile oksidatif stresi iyileştirmesi, yapılan araştırmaların da ışığında antioksidan olabileceği görüşünü desteklemektedir. Kafeinin antioksidan olarak uygun dozunun belirlenmesinde, etki mekanizmalarının açığa kavuşturulmasında ileri hayvan ve insan çalışmalarının gerekli olduğunu düşünmekteyiz. (Gazi Med J 2012; 23: 13-8)

Kafeinin rat karaciğerinde oksidan antioksidan mekanizmalara etkisi

Objective: Caffeine (1, 3, 7-trimethylxanthine) is a purine alkaloid which exists in a variety of foods and drinks. Today, caffeine is a regularly consumed substance, found in coffee, tea, chocolate and cola. The main aim of our study was to compare the potential antioxidant effects of oral caffeine intake in rat the liver at two different doses over a short period of time. Methods: We measured malondialdehyde (MDA) levels, which is a product of lipid peroxidation, in rat livers following caffeine administration. In addition, we evaluated superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione S transferase (GST) activities as well as glutathione (GSH) levels in the liver. Thirty male Wister rats were used. Rats were equally divided into three groups. Group 1 was the control group, Group 2 received 30 mg/kg of caffeine and Group 3 received 100 mg/kg caffeine (non-toxic high dose) orally for 14 days (a short time period). Results: Our results showed that the 30mg/kg and 100 mg/kg caffeine doses decreased lipid peroxidation in liver. Antioxidant enzyme activities in the rat liver, like SOD, catalase, GPx and GST, showed a statistically significant increase with caffeine intake. Liver glutathione levels, in comparison to the control group, showed a slight increase, but this was not statistically significant. Results from the Spearman analysis showed a strong negative correlation between MDA levels and GPx, GST and SOD activities. Tissue GST activity and tissue catalase activity showed a strong positive correlation. Conclusion: Decreased lipid peroxidation and increased antioxidant enzyme activities demonstrate improved control of oxidative stress, suggesting that these doses of caffeine may have antioxidant activity. (Gazi Med J 2012; 23: 13-8)

___

  • Kolaylı S, Ocak M, Kucuk M, Abbasoglu R. Does caffeine bind to metal 1. Kolaylı S, Ocak M, Kucuk M, Abbasoglu R. Does caffeine bind to metal ions? Food Chem 2004; 84: 383-8.
  • Son HY, Nishikawa A, Kanki K, Okazaki K, Kitamura Y, Lee KY, et al. Synergistic interaction between excess caffeine and deficient iodine on the promotion of thyroid carcinogenesis in rats pretreated with N-bis(2-hydroxypropyl)nitrosamine. Cancer Sci 2003; 94: 334-7.
  • Al-Deeb S, Al-Moutaery K, Arshaduddin M, Biary N, Tariq M. Effect of acute caffeine on severity of harmaline induced tremor in rats. Neurosci Lett 2002; 325: 216-8.
  • Concas A, Porcu P, Sogliano C, Serra M, Purdy PH, Biggio G. Caffeine-in-duced increases in the brain and plasma concentrations of neuroactive steroids in the rat. Pharmacol Biochem Behav 2000; 66: 39-45.
  • Devasagayam TP, Kamat JP, Mohan H, Kesavan PC. Caffeine as an antioxidant; inhibition of lipid peroxidation induced by ROS. Biochim et Biophys Acta 1996; 1282: 63-70.
  • George KC, Hebbar SA, Kale SP, Kesavan PC. Caffeine protects mice against whole-body lethal dose of γ -irradiation. J Radiol Prot 1999; 19:171-6.
  • Lee C. Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clin Chim Acta 2000; 295: 141-54.
  • Al Moutaery K, Al Deeb S, Ahmad Khan H, Tariq M. Caffeine impairs short-term neurological outcome after concussive head injury in rats. Neurosurgery 2003; 53: 704-11.
  • Karas M, Chakrabarti SK. Influence of caffeine on allyl alcohol-induced hepatotoxicity in rats. In vivo study. J Environ Pathol Toxicol Oncol 2001;20: 141-54.
  • İlhan A, Akyol O, Gurel A, Armutcu F, Iraz M, Oztas E. Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis induced oxidative stress in rats. Free Radic Biol Med 2004; 37:386-94.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurements with the folin phenol reagent. J Biol Chem 1951; 193: 265-75.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95, 351-8.
  • Yi-Sun S, Oberly LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34: 497-500.
  • Paglia DE, Valentina WN. Studies on quantitative and qualitative characterization of erytrocte glutathione peroxidase. J Lab Clin Med 1967; 70:158-69.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130-9.
  • Aebi H. Catalase, In: H.U.Bergmeyer, (Ed): Methods of Enzymatic Analysis, Academic Press, New York and London 1974; pp: 673-7.
  • Belayev L, Khoutorova L, Zhang Y, Belayev A, Zhao W, Busto R, et al. Caffeinol confers cortical but not subcortical neuroprotection after transient focal cerebral ischemia in rats. Brain Res 2004; 1008: 278-83.
  • Aronowski J, Strong R, Shirzadi A, Grotta JC. Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke. Stroke 2003; 34: 1246.
  • Strong R, Grotta JC, Aronowski J. Combination of low dose ethanol and caffeine protects brain from damage produced by focal ischemia in rats. Neuropharmacology 2000; 39: 515-22.
  • Azam S, Hadi N, Khan NU, Hadi SM. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med Sci Monit 2003; 9: 330-5.
  • Yukawa GS, Mune M, Otani1 H, Tone Y, Liang M, Iwahashi H, et al. Effects of Coffee Consumption on Oxidative Susceptibility of Low-Density Lipoproteins and Serum Lipid Levels in Humans. Biochemistry (Moscow) 2004; 69: 70-4.
  • Kamat JP, Boloor KK, Devasagayam TPA, Jayashree B, Kesavan PC. Differential modification by caffeine of oxygen-dependent and independent effects of γ-irradiation on rat liver mitochondria. Int J Radiat Biol 2000; 76: 1281-8.
  • Mukhopadhyay S, Mondal A, Poddar MK. Chronic administration of caffeine: effect on the activities of hepatic antioxidant enzymes of Ehrlich ascites tumor-bearing mice. Indian J Exp Biol 2003; 41: 283-9.
  • Moslen MT. Reactive oxygen species in normal physiology, cell injury and phagocytosis. Adv Exp Med Biol 1994; 366: 17-27.
  • Nikolic J, Bjelakovic G, Stojanovic I. Effect of caffeine on metabolism of L-arginine in the brain. Mol Cell Biochem 2003; 244: 125-8.
  • Birkner E, Grucka-Mamczar E, Zwirska-Korczala K, Zalejska-Fiolka J, Stawiarska Pieta B, Kasperczyk S, et al. Influence of sodium fluoride and caffeine on the kidney function and free-radical processes in that organ in adult rats. Biol Trace Elem Res 2006; 109: 35-48.
  • Rossowska MJ, Nakamoto T. Effects of chronic caffeine feeding on the activities of oxygen free radical defense enzymes in the growing rat heart and liver. Experientia 1994; 50: 465-8.
  • Abraham SK, Singh SP. Anti-genotoxicity and glutathione S-transferase activity in mice pretreated with caffeinated and decaffeinated coffee. Food Chem Toxicol 1999; 37: 733-9.
  • Meister A. New aspects of glutathione biochemistry and transport selective alteration of glutathione metabolism. Nutrition Rev 1984; 12: 397-410.
  • Gözükara EM. Biyokimya İ.Ü. Yayınları Malatya; 1989.
  • Meister A. Selective moification of glutathione metabolism. Science 1983; 220: 472-7.
  • Noschang CG, Krolow R, Pettenuzzo LF, Avila MC, Fachin A, Arcego D, et al. Interactions between chronic stress and chronic consumption of caffeine on the enzymatic antioxidant system. Neurochem Res 2009; 34: 1568-74.
  • Ofluoglu E, Pasaoglu H, Pasaoglu A. The Effects of Caffeine on L-Arginine Metabolism in the Brain of Rats. Neurochem Res 2009; 34: 395-9.
  • Varma SD, Hegde KR. Prevention of Oxidative Damage to Lens by Caffeine. J Ocul Pharmacol Ther 2010; 26: 73-7.
  • Paşaoğlu H, Ofluoğlu E, Demirtaş C, Husseın A, Paşaoğlu OT. The effect of caffeine on oxidative stress in liver and heart tissues of rats. Turk J Med Sci 2011; 41: 665-71.
Gazi Medical Journal-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Gazi Üniversitesi Tıp Fakültesi