Effects of ingredients and cooking time on total phenolic content and antioxidant activity of different homemade tomato sauces

Tomato is one of the most consumed fruits in the world. Tomato sauce, a tomato product, is one of the mother sauces that has been developed by Escoffier (1846-1935). Nowadays, tomato sauce has been adapted by each country according to their own culinary culture. In the current study four different tomato sauce recipes were investigated in the context of their antioxidant activity and total phenolic content. Hydrophilic and lipophilic extractions of samples were evaluated separately. It was found that there is a relationship between total phenolic content and antioxidant activity in hydrophilic extraction. However, no similar correlation was found between total phenolic content and antioxidant activity in lipophilic extraction. According to the results, the highest antioxidant activity of both hydrophilic and lipophilic extractions was observed in S1 with the values 25.53±1.01 and 45.48±2.06 respectively. In lipophilic extraction, S2 had the lowest antioxidant activity with 32.77±1.07, because of the lack of the ingredients high in lipophilic antioxidant compounds. It was observed that the shortest cooking time with 10 min provide the highest retention of antioxidant activity and total phenolic content in this sauce. Also, antioxidant activity of lipophilic extraction for longer cooking time applied sauces (S4) could be kept high with ingredients such as carrot. It can be suggested that adding of ingredients which have antioxidant activity may be useful for providing bioactive properties in long cooking time procedures and it should be noted that the length of cooking time negatively affected the TPC values.

___

Arranz, S., Martinez-Huelamo, M., Vallverdu-Queralt, A., Valderas-Martinez, P., Illan, M., Sacanella, E., Escribano, E., Estruch R., Lamuela-Raventos, R.M. (2015). Influence of olive oil on carotenoid absorption from tomato juice and effects on postprandial lipemia. Food Chemistry, 168, 203-210. https://doi.org/10.1016/j.foodchem.2014.07.053

Bae, H., Jayaprakasha, G. K., Jifon, J., Patil, B. S. (2012). Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food chemistry, 134(4), 1912-1918. https://doi.org/10.1016/j.foodchem.2012.03.108

Beltrán Sanahuja, A., De Pablo Gallego, S. L., Maestre Pérez, S. E., Valdés García, A., & Prats Moya, M. S. (2019). Influence of cooking and ingredients on the antioxidant activity, phenolic content and volatile profile of different variants of the mediterranean typical tomato sofrito. Antioxidants, 8(11), 551. https://doi.org/10.3390/antiox8110551

Buchner, N., Krumbein, A., Rohn, S., & Kroh, L. W. (2006). Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 20(21), 3229-3235. https://doi.org/10.1002/rcm.2720

Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R. & De Vos, C.H.R. (2008). Changes in antioxidants and metabolite profiles during production of tomato paste, Journal of Agricultural and Food Chemistry, 56(3), 964-973. https://doi.org/10.1021/jf072990e

Cemeroğlu, B. (2013). Gıda analizleri (Editor: Cemeroğlu, B.). Bizim Büro Basımevi, ISBN: 9786056341939. Chang, C.H., Lin, H.Y., Chang, C.Y., Liu, Y.C. (2006).

Comparisons on the antioxidant properties of fresh, freezedried and hot-air-dried tomatoes, Journal of Food Engineering, 77(3), 478-485. https://doi.org/10.1016/j.jfoodeng.2005.06.061

Corzo-Martínez, M., Corzo, N., Villamiel, M. (2007). Biological properties of onions and garlic. Trends in food science & technology, 18(12), 609-625. https://doi.org/10.1016/j.tifs.2007.07.011

Cracknell, H.L., Kaufmann, R., J. (2011). Escoffier Le Guide Culinaire. 2nd edition. John Wiley&Sons Inc., ISBN: 978-0470900277.

Dewanto, V., Wu, X., Adom, K.K. & Liu, R.H., (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, Journal of Agricultural and Food Chemistry, 50, 3010-3014. https://doi.org/10.1021/jf0115589

Dimitrios, B. (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17(9), 505- 512. https://doi.org/10.1016/j.tifs.2006.04.004

Donkor, S., Agyekum, A.K., Akuamoa, F., Adu-Bobi, N.A.K., Achel, D.G., Asare, I.K., Kyei, J. (2015). Antioxidant potentials of tomato paste extracts found on major markets in Accra Metropolis. American Journal of Applied Chemistry, 3(5):158-163. https://doi.org/10.11648/j.ajac.20150305.11

Forbes-Hernandez, T. Y., Gasparrini, M., Afrin, S., Bompadre, S., Mezzetti, B., Quiles, J. L., Giampieri F. & Battino, M. (2016). The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity? Critical Reviews in Food Science and Nutrition, 56(sup1), S46-S59. https://doi.org/10.1080/10408398.2015.1051919

Gahler, S., Otto, K., Böhm, V. (2003). Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to 137 different products, Journal of Agricultural and Food Chemistry, 51, 7962-7968. https://doi.ogr/10.1021/jf034743q

Gorinstein, S., Jastrzebski, Z., Leontowicz, H., Leontowicz, M., Namiesnik, J., Najman, K., Park, Y.S., Heo, B.G., Cho, J.Y., Bae, J.H. (2009). Comparative control of the bioactivity of some frequently consumed vegetables subjected to different processing conditions. Food Control, 20(4), 407-413. https://doi.org/10.1016/j.foodcont.2008.07.008

Hernández, M., Rodríguez, E., Díaz, C. (2007). Free hydroxycinnamic acids, lycopene, and color parameters in tomato cultivars. Journal of Agricultural And Food Chemistry, 55, 8604-8615. https://doi.org/10.1021/jf071069u

Kampa, M., Hatzoglou, A., Notas, G., Damianaki, A., Bakogeorgou, E., Ge-metzi, C., Kouroumalis, E., Martin, P.M. & Castanas, E. (2000). Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutrition and Cancer, 37(2), 223–233. https://doi.org/10.1207/S15327914NC372_16

Knockaert, G., Pulissery, S. K., Colle, I., Van Buggenhout, S., Hendrickx, M., & Van Loey, A. (2012). Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: Effect of additional thermal and high pressure processing. Food Chemistry, 135(3), 1290–1297. https://doi.org/10.1016/j.foodchem.2012.05.065

Martínez-Huélamo, M., Tulipani, S., Estruch, R., Escribano, E., Illán, M., Corella, D., & Lamuela-Raventós, R.M. (2015). The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: A pharmacokinetic study. Food Chemistry, 173, 864-872. https://doi.org/10.1016/j.foodchem.2014.09.156

Meyer, F., Galan, P., Douville, P., Bairati, I., Kegle, P., Bertrais, S., Estaquio C., Hercberg, S. (2005). Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. International Journal of Cancer, 116(2), 182–186. https://doi.org/10.1002/ijc.21058

Motilva, M.J., Maciá, A., Paz-Romero, M., Labrador, A., Domínguez, A., Peiró, L. (2014). Optimisation and validation of analytical methods for the simultaneous extraction of antioxidants: Application to the analysis of tomato sauces. Food Chemistry, 163, 234-243. https://doi.org/10.1016/j.foodchem.2014.04.096

Mozos, I., Stoian, D., Caraba, A., Malainer, C., Horbańczuk, J.O., Atanasov, A.G. (2018). Lycopene and Vascular Health. Frontiers in Pharmacology, 9, 521. https://doi.org/10.3389/fphar.2018.00521

Nahak, G., Suar, M., Sahu, R. K. (2014). Antioxidant potential and nutritional values of vegetables: a review. Research Journal of Medicinal Plants, 8(2), 50-81. https://doi.org/10.3923/rjmp.2014.50.81

Ricci, A., Antonini, E., Ninfali, P. (2017). Homemade Tomato Sauce in the Mediterranean Diet: A Rich Source of Antioxidants. Italian Journal of Food Science, 30(1). https://doi.org/10.14674/IJFS-980

Sahlin, E., Savage, G.P., Lister, C.E. (2004). Investigation of the antioxidant properties of tomatoes after processing, Journal of Food Composition and Analysis, 17, 635–647. https://doi.org/10.1016/j.jfca.2003.10.003

Sekin, Y., Bağdatlioğlu, N., & Kirdinli, Ö. (2005). Domates konservesi üretiminde çeşitli faktörlerin likopen niceliğine etkisi. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 1(1), 7-14. https://doi.org/10.18466/cbufbe.35354

Seybold, C., Fröhlich, K., Bitsch, R., Otto, K. & Böhm, V., (2004). Changes in contents of carotenoids and vitamin E during tomato processing, Journal of Agricultural and Food Chemistry, 52, 7005-7010. https://doi.org/10.1021/jf049169c

Singleton, V.L., Rossi, J.A., (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, 144.

Stahl, W., Sies, H., (1992). Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans, Journal of Nutrition, 122, 2161-2166. https://doi.org/10.1093/jn/122.11.2161

Tomas, M., Beekwilder, J., Hall, R. D., Sagdic, O., Boyacioglu, D., Capanoglu, E. (2017). Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chemistry, 220, 51-58. https://doi.org/10.1016/j.foodchem.2016.09.201

Tomaş, M., Sağdiç, O., Çatalkaya, G., Kahveci, D., Çapanoğlu, E. (2019). Effects of cooking and extra virgin olive oil addition on bioaccessibility of carotenes in tomato sauce. Turkish Journal of Agriculture and Forestry, 43. https://doi.org/10.3906/tar-1801-127

Vallejo, F., Tomás‐Barberán, F. A., & García‐Viguera, C. (2003). Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. Journal of the Science of Food and Agriculture, 83(14), 1511-1516. https://doi.org/10.1002/jsfa.1585

Wachtel-Galor, S., Wong, K.W., Benzie, I.F. (2008). The effect of cooking on Brassica vegetables. Food chemistry, 110(3), 706-710. https://doi.org/10.1016/j.foodchem.2008.02.056

Yilmaz, Y., Toledo, R. (2005). Antioxidant activity of watersoluble Maillard reaction products. Food Chemistry, 93(2), 273–278. https://doi.org/10.1016/j.foodchem.2004.09.043