Et ve et ürünlerinin üretimi ve saklanmasında antimikrobiyal ambalajlama sistemlerinin kullanımı

Yapısı gereği daha kolay bozulma eğiliminde olan taze ve işlenmiş et ürünlerinin üretimi ve depolanması sürecinde birçok mikrobiyolojik, enzimatik, fizikokimyasal ve biyokimyasal değişim meydana gelmektedir. Bununla birlikte tüketiciler, katkı maddelerinin daha az kullanıldığı, doğal özellikleri en az düzeyde değişmiş, kolay hazırlanabilen, daha uzun raf ömrüne sahip, uygun maliyetli gıdaları daha çok tercih etmektedirler. Bu nedenlerle, gıda ambalajlama sanayi, özellikle gıdanın kalitesini ve güvenliğini koruma ve geliştirme amaçlı antimikrobiyal ambalajlama sistemleri gibi geleneksel paketleme yöntemlerinde bulunmayan farklı işlevler içeren yeni uygulamaları geliştirmeye yönelmiştir. Bu tür paketlemede, gıda güvenliğini ve kalitesini iyileştirmenin yanı sıra mikroorganizmaların gelişme hızları yavaşlatılarak ürün raf ömrü uzatılmakta böylece ürünün taşınması ve depolanması esnasında mevcut mikroorganizma gelişimi de engellenmektedir. Bu sayede gıdalarla insan vücuduna alınan koruyucu maddeler azaltılarak sağlık üzerindeki olumsuz etkiler de önlenmektedir. Bu sistemlerde antimikrobiyal gıda ambalaj bileşenlerinin ambalaj materyaline uygulanması; polimer içine antimikrobiyal maddelerin ilavesi, polimer yüzeylerinin antimikrobiyal maddelerle kaplanması, polimer üzerine antimikrobiyal maddelerin immobilize edilmesi ve antimikrobiyal özellikleri olan polimerlerin kullanımı şeklinde gerçekleştirilebilir. Bu derlemede genel olarak antimikrobiyal ambalajlama ve uygulama yöntemleri açıklanarak et ve et ürünlerinde yenilikçi paketleme sistemleri ve kullanımı değerlendirilmiştir.

Use of antimicrobial packaging systems in the production and storage of meat and meat products

Many microbiological, enzymatic, physicochemical, and biochemical changes occur during the production and storage of fresh and processed meat products, which tend to deteriorate more easily by their nature. Nevertheless, consumers mainly prefer cost-effective foods that have a longer shelf life and minimally modified natural properties, can be easily prepared, and in which fewer additives are used. For these reasons, the food packaging industry has turned towards developing new applications with different functions that are not found in traditional packaging methods, such as antimicrobial packaging systems, especially for the protection and improvement of food quality and safety. In this type of packaging, in addition to improving food safety and quality, the shelf life of the product is extended by slowing down the growth rate of microorganisms. Thus, the existing growth of microorganisms during the transportation and storage of the product is also prevented. Therefore, the preservatives taken into the human body with foods are reduced, and the negative effects on health are also avoided. In these systems, the application of antimicrobial food packaging components to the packaging material can be performed by the addition of antimicrobial agents into the polymer, coating polymer surfaces with antimicrobial agents, immobilizing antimicrobial agents on the polymer, and using polymers with antimicrobial properties. In this review, antimicrobial packaging and application methods were generally explained, and innovative packaging systems and their use in meat and meat products were evaluated.

___

  • Ahmed, I., Lin, H., Zou, L., Brody, A.L., Li, Z., Qazi, I. M., Pavasea, T.R., Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163-178. https://doi.org/10.1016/j.foodcont.2017.06.009
  • Akbar, Anal A.K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control, 38, 88-95. https://doi.org/10.1016/j.foodcont.2013.09.065
  • Alves-Silva, J. M, dos Santos, S.M.D., Pintado, M.E., Pe´rez-A´ lvarez, J.A., Fern´andez-L´opez, J., ViudaMartos, M. (2013). Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control, 32(2), 371-78. https://doi.org/10.1016/j.foodcont.2012.12.022
  • Appendini, P. and Hotchkiss, J.H. (2002). Review of antimicrobial food packaging. Innovative Food Science, 3, 113- 126. https://doi.org/10.1016/S1466-8564(02)00012-7
  • Ayhan, Z. (2013). Potential applications of nanomaterials in food packaging and interactions of nanomaterials with food. In: Silvestre C, Cimmino S, editors. Ecosustainable polymer nanomaterials for food packaging: Innovative solutions, characterization needs, safety and environmental issues. Boca Raton, Florida, U.S.A: CRC Press. p 243-79.
  • Aymerich, T., Picouet, P.A., , Monfort, J.M. (2008). Decontamination technologies for meat products. Meat Science, 78, 111-129. https://doi.org/10.1016/j.meatsci.2007.07.007
  • Azlin-Hasim, S., Cruz-Romero, M.C., Morris, M.A., Padmanabhan, S.C., Cummins, E., Kerry, J.P. (2016). The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food and Bioprocess Technology, 9(10), 1661-1673. https://doi.org/10.1007/s11947-016-1745-7
  • Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., Rollini, M. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control, 26(2), 387-392. https://doi.org/10.1016/j.foodcont.2012.01.046
  • Brody, A.L., Strupinsky, E.R. and Kline, L.R. (2001). Antimicrobial packaging. Active packaging for food applications (pp. 131-189). Lancaster: A Technomic Publishing. https://doi.org/10.1201/9781420031812
  • Brody, A.L., Bugusu, B., Han, J.H., Sand, C.K. and Mchugh, T.H. (2008). Innovative Food Packaging Solutions. Journal Of Food Science, 73, 8. https://doi.org/10.1111/j.1750-3841.2008.00933.x
  • Camilloto, G.P., de Fátima Ferreira Soares, N., dos Santos Pires, A.C., de Paula, F.S. (2009). Preservation of sliced ham through triclosan active film. Packaging Technology and Science: An International Journal, 22(8), 471-477. https://doi.org/10.1002/pts.871
  • Chen, H., Williams, J. (2005). Bacteriocins offer enormous promise in food packaging safety advances. Available source: http://www.silliker.com/html/eResearch/vol1issue2.php (Accessed: 24.07.2020)
  • Chi-Zhang, Y., Yam, K. L., Chikindas, M. L. (2004). Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 90(1), 15-22. https://doi.org/10.1016/S0168-1605(03)00168-5
  • Chung, D., Papadakis, S. E., Yam, K. L. (2003). Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials. International Journal of Food Science & Technology, 38(2), 165-169. https://doi.org/10.1046/j.1365-2621.2003.00657.x
  • Cleveland, J., Montville, T.J., Nes, I.F., Chikindas, M.L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  • Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90-103. https://doi.org/10.1016/j.meatsci.2007.07.035
  • Coma, V. (2012). Antimicrobial and antioxidant active packaging for meat and poultry. In Advances in meat, poultry and seafood packaging (pp. 477-503). Woodhead Publishing. https://doi.org/10.1533/9780857095718.4.477
  • Cooksey, K. (2001). Antimicrobial food packaging materials. Additives for Polymer, 8, 6-10. https://doi.org/10.1016/S0306-3747(01)80187-1
  • Cotter, P.D., Hill, C., Ross, R.P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews, 3, 777- 788. https://doi.org/10.1038/nrmicro1273
  • Cutter, C.N. (1999). The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces. Journal of Food Protection, 62(5), 474-479. https://doi.org/10.4315/0362-028X-62.5.474
  • Cutter C.N., Willet J.L., Siragusa G.R. (2001). Improved antimicrobial activity of nisin-incorparated polymer films by formulation change and addition of food grade chelator. Letters in Applied Microbiology, 33(4), 325-328. https://doi.org/10.1046/j.1472-765X.2001.01005.x
  • Çelebi Sezer, Y., Bozkurt, H. (2019). Use of novel casing in sucuk production: Antimicrobials incorporated into multilayer plastic film. Acta Alimentaria, 48(1), 1-8. https://doi.org/10.1556/066.2018.0001
  • Dawson, P.L., Carl, G.D., Acton, J.C., Han, I.Y. (2002). Effect of lauric acid and nişin impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. Poultry Science, 81, 721-726. https://doi.org/10.1093/ps/81.5.721
  • Dobrucka, R., Cierpiszewski, R. (2014). Active and intelligent packaging food research and development- a review. Polish Journal of Food and Nutrition Science, 64(1), 7e15. https://doi.org/10.2478/v10222-012-0091-3
  • Espitia, P.J.P., Batista, R.A., Otoni, C.G., Soares, N.F.F. (2016). Antimicrobial food packaging incorporated with triclosan: potential uses and restrictions. In Antimicrobial food packaging (pp. 417-423). Academic Press. https://doi.org/10.1016/B978-0-12-800723-5.00033-4
  • European Union (1995). European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. Available from: https://publications.europa.eu/en/publication-detail/-/publication/ (Accessed: 24.07.2020)
  • EU (2009). Guidance to the commission regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Off J Eur Union, L135, 3-11.
  • Fang, Z., Zhao, Y., Warner, R.D., Johnson, S.K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60-71. https://doi.org/10.1016/j.tifs.2017.01.002
  • FDA (2001). U.S. Office of Premarket Approval, Agency Response Letter GRAS Notice No. GRN 000064: Lysozyme. Available from: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ NoticeInventory/ucm153975.htm. Accessed 2017 October 25.
  • Feng, X., Fu, C., Yang, H. (2017). Gelatin addition improves the nutrient retention, texture and mass transfer of fish balls without altering their nanostructure during boiling. LWT- Food Science and Technology, 77, 142-151. https://doi.org/10.1016/j.lwt.2016.11.024
  • Franklin, N.B., Cooksey, K.D., Getty, K.J.K. (2004). Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. Journal of Food Protection, 67(3), 480-485. https://doi.org/10.4315/0362-028X-67.3.480
  • Guerra, N.P., Macias, C.L., Agrasar, A.T, Castro, L.P. (2005). Development of a bioactive packaging cellophane using Nisaplin as biopreservative agent. Letters in Applied Microbiology, 40, 106-110. https://doi.org/10.1111/j.1472-765X.2004.01649.x
  • Ha, J.U., Kim, Y.M., Lee, D.S. (2001). Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packaging Technology and Science, 15, 55-62. https://doi.org/10.1002/pts.537
  • Han, J.H. (2000). Antimicrobial Food Packaging. Food Technology, 54(3), 56-65.
  • Imran, M., Revol-Junelles, A. M., Martyn, A., Tehrany, E. A., Jacquot, M., Linder, M., Desobry, S. (2010). Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology, Critical Reviews in Food Science and Nutrition, 50(9), 799-821. https://doi.org/10.1080/10408398.2010.503694
  • Joerger, R.D., Sabesan, S., Visioli, D., Urian, D., Joerger, M.C. (2009). Antimicrobial activity of chitosan attached to ethylene copolymer films. Packaging Technology and Science, 22, 125-138. https://doi.org/10.1002/pts.822
  • Junior, A.V., Fronza, N., Bortolini Foralosso, F., Dezen, D., Huber, E., Zimnoch dos Santos, J.H., Francisco Machado, R.A., Novy Quadri, M.G. (2015). Biodegradable duofunctional active film: Antioxidant and antimicrobial actions for the conservation of beef. Food Bioprocess and Technology, 8, 75-87. https://doi.org/10.1007/s11947-014-1376-9
  • Kim, Y.M., Paik, H.D., Lee, D.S. (2002). Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. Journal of the Science of Food and Agriculture, 82, 998-1002. https://doi.org/10.1002/jsfa.1125
  • Lee, C.H., An, D.S., Lee, S.C., Park, H.J., Lee, D.S. (2004). A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin and α-tocopherol. Journal of Food Engineering, 62(4), 323-329. https://doi.org/10.1016/S0260-8774(03)00246-2
  • Limjaroen, P., Ryser, E., Lockhart, H., Harte, B. (2005). Inactivation of Listeria monocytogenes on beef Bologna and Cheddar cheese using polyvinyl-idene chloride films containing sorbic acid. Journal of Food Science, 70(5), M267-M71. https://doi.org/10.1111/j.1365-2621.2005.tb09982.x
  • Marcos, B., Aymerich, T., Monfort, J. M., Garriga, M. (2007). Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. International Journal of Food Microbiology, 120(1-2), 152-158. https://doi.org/10.1016/j.ijfoodmicro.2007.06.003
  • Mauriello, G., Ercolini, D., La Storia, A., Casaburi, A., Villani, F. (2004). Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus. Journal of Applied Microbiology, 97, 314-322. https://doi.org/10.1111/j.1365-2672.2004.02299.x
  • McMillin, K.W. (2017). Advancements in meat packaging. Meat science, 132, 153-162. https://doi.org/10.1016/j.meatsci.2017.04.015
  • Min, S., Harris, L.J., Krochta, J.M. (2005). Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli O157:H7. Journal of Food Science, 70(7), 332-338. https://doi.org/10.1111/j.1365-2621.2005.tb11476.x
  • Millette, M., Le Tien, C., Smoragiewicz, W., Lacroix, M. (2007). Inhibition of Staphylococcus aureus on beef by nisincontaining modified alginate films and beads. Food Control, 18, 878-884. https://doi.org/10.1016/j.foodcont.2006.05.003
  • Ming, X., Weber, G., Ayres, J., Sandine, W. (1997). Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. Journal of Food Science, 62, 413-415. https://doi.org/10.1111/j.1365-2621.1997.tb04015.x
  • Natrajan, N., Sheldon, B.W. (2000). Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. Journal of Food Protection, 63, 1189- 1196. https://doi.org/10.4315/0362-028X-63.9.1189
  • Neetoo, H., Ye, M., Chen, H., Joerger, R.D., Hicks, D.T., Hoover, D.G. (2008). Use of nisin-coated plastic films to control Listeria monocytogenes on vacuum-packaged coldsmoked salmon. International Journal of Food Microbiology, 122(1-2), 8-15. https://doi.org/10.1016/j.ijfoodmicro.2007.11.043
  • Panea, B., Ripoll, G., Gonza´lez J., Ferna´ndez-Cuello, A., Albert´ı P. (2014). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering, 123, 104-112. https://doi.org/10.1016/j.jfoodeng.2013.09.029
  • Quesada, J., Sendra, E., Navarro, C., Sayas-Barber´a, E. (2016). Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods, 5(3), 57. https://doi.org/10.3390/foods5030057
  • Quintavalla, S., Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373-380. https://doi.org/10.1016/S0309-1740(02)00121-3
  • Quattara, B., Simard, R. E., Piette, G., Be´gin, A., Holley, R.A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with Chitosan. International Journal of Food Microbiology, 62, 139-148. https://doi.org/10.1016/S0168-1605(00)00407-4
  • Radusin, T.I., Ristić, I.S., Pilić, B.M., Novaković, A.R. (2016). Antimicrobial nanomaterials for food packaging applications. Food and Feed Research, 43(2), 119-126. https://doi.org/10.5937/FFR1602119R
  • Realini, C. E., Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98, 404- 419. https://doi.org/10.1016/j.meatsci.2014.06.031
  • Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., PerezAlvarez, J.A., Fern´andez-L´opez J. (2013). In Vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. Journal of Food Protection, 76(7), 1218-1225. https://doi.org/10.4315/0362-028X.JFP-12-554
  • Ruiz-Navajas, Y., Viuda-Martos, M., Barber, X., Sendra, E., Perez-Alvarez, J.A., Fern´andez-L´opez J. (2015). Effect of chitosan edible films added with Thymus moroderi and Thymus piperella essential oil on shelf-life of cooked cured ham. Journal of Food Science and Technology, 52(10), 6493-6501. https://doi.org/10.1007/s13197-015-1733-3
  • Santiago-Silva, P., Soares, N.F.F., Nobrega, J.E., Junior, M.A.W., Barbosa, K.B.F., Volp, A.C.P., Zerdas, E.R.M.A., Würlitzer, N.J. (2009). Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control, 20, 85-89. https://doi.org/10.1016/j.foodcont.2008.02.006
  • Scannell, A.G.M., Hill, C., Ross, R.P., Marx, S., Hartmeier, W., Arendt, E.K. (2000). Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin. International Journal of Food Microbiology, 60, 241-249. https://doi.org/10.1016/S0168-1605(00)00314-7
  • Sezer, U.A., Sanko, V., Yuksekdag, Z.N., Uzundağ, D., Sezer, S. (2016). Use ofoxidized regenerated cellulose as bactericidal filler for food packaging applications. Cellulose, 23(5), 3209-3219. https://doi.org/10.1007/s10570-016-1000-4
  • Seydim, A.C., Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5), 639-644. https://doi.org/10.1016/j.foodres.2006.01.013
  • Siragusa, G., Cutter, C., Willett, J. (1999). Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 16(3), 229- 35. https://doi.org/10.1006/fmic.1998.0239
  • Skandamis, P.N., Nychas, G.J.E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79, 35-45. https://doi.org/10.1016/S0168-1605(02)00177-0
  • Sofos, J.N. (2008). Challenges to meat safety in the 21st century, Meat Sciences, 78, 3-13. https://doi.org/10.1016/j.meatsci.2007.07.027
  • Soysal, Ç., Bozkurt, H., Dirican, E., Güçlü, M., Bozhüyük, E.D., Uslu, A.E., Kaya, S. (2015). Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks. Food Control, 54, 294-299. https://doi.org/10.1016/j.foodcont.2015.02.009
  • Suppakul, P., Miltz, J. Sonneveld, K., Bigger, S.W. (2003). Active Packaging Technologies With an Emphasis on Antimicrobial Packaging and its Applications, Journal of Food Science, 68(2), 408-420. https://doi.org/10.1111/j.1365-2621.2003.tb05687.x
  • Üçüncü, M. (2011). Gıda Ambalajlama Teknolojisi. Ambalaj Sanayicileri Derneği İktisadi İşletmesi, İstanbul, Türkiye, 896 s.
  • Vermeiren, L., Devlieghere, F.,Van Beest,M., de Kruijf, N., Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10, 77-86. https://doi.org/10.1016/S0924-2244(99)00032-1
  • Vermeiren, L., Devlieghere, F., Debevere, J. (2002). Effectiveness of some recent antimicrobial packaging concepts. Food Additives and Contaminants(suppl 1.), 163-171. https://doi.org/10.1080/02652030110104852
  • Wen, P., Zhu, D-H., Feng, K., Liu, F-J., Lou, W-Y., Li, N., Zong, M-H., Wu, H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996-1004. https://doi.org/10.1016/j.foodchem.2015.10.043
  • Wollfs, P., Radstrom, P. (2006). Real-time PCR for the detection of pathogens in meat, in L. M. L. NOLLET and F. TOLDRA (eds), Advanced technologies for meat processing, London: CRC Press, 131-53. https://doi.org/10.1201/9781420017311.ch6
  • Yıldırım, S., Röcker, B., Pettersen, M. K., Nilsen‐Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., Coma, V. (2018). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. https://doi.org/10.1111/1541-4337.12322
  • Yingyuad, S., Ruamsin, S., Reekprkhon, D., Douglas, S., Pongamphai, S., Siripatrawan, U. (2006). Effect of chitosan coating and vacuumpackaging on the quality of refrigerated grilled pork. Packaging Technology and Science, 19, 149-157. https://doi.org/10.1002/pts.717
  • Zhou, G.H., Xu, X.L., Liu, Y. (2010). Preservation Technologies for Fresh Meat. Meat Science, 86, 119-128. https://doi.org/10.1016/j.meatsci.2010.04.033
  • Zinoviadou, K.G., Koutsoumanis, K.P., Biliaderis, C.G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24(1), 49-59. https://doi.org/10.1016/j.foodhyd.2009.08.003