A1 milk and beta-casomorphin-7

Milk is composed of water, proteins, lipids, lactose, vitamins, and minerals. More than 80% of most mammals’ milk proteins are constituted by caseins. Casein is a group of proteins and they are sub-divided into αs1-, αs2-, β- and κ-casein families. Among these casein families, β-casein is the second most abundant protein. Different mutations in the cow milk β-casein gene led to 12 genetic variants and most common of these are genetic variants A1 and A2. The A1 and A2 variants differ only at amino acid position 67, which is histidine in A1 or proline in A2 milk. This difference in amino acid sequence suggests a conformational change in the secondary structure of the expressed β-casein. Milk that contains A1 β-casein and A2 β-casein are known as A1 milk and A2 milk, respectively. A1 β-casein milk releases an amino acid bioactive peptide called beta-casomorphin-7 (βCM-7) in small intestine. Beta-casomorphin-7 released from A1 β-casein is responsible for many human disorders like type-1 diabetes, autism, schizophrenia, alzheimer’s disease (AD), attention deficit hyperactivity disorder (ADHD), multiple sclerosis (MS) and heart diseases.


Abrahams, B.S., Geschwind, D.H. (2008). Advances in autism genetics: on the thresholdof a new neurobiology. Nature Reviews Genetics, 9(5), 341-55. https://doi.org/10.1038/nrg2346

Anthony, M.S., Clarkson, T.B., Williams, J.K. (1998). Effects of soy isoflavones on atherosclerosis: potential mechanisms. American Journal of Clinical Nutrition, 68, 1390- 1393. https://doi.org/10.1093/ajcn/68.6.1390S

Banerjee, S. (2018). A2 Milk: The unknown story about a milk protein. Acta Scientific Nutritional Health, 2(3), 28-31.

Barnett, M. P., McNabb, W. C., Roy, N. C., Woodford, K. B., Clarke, A. J. (2014). Dietary A1 β-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 β-casein in Wistar rats. International Journal of Food Sciences and Nutrition, 65, 720- 727. https://doi.org/10.3109/09637486.2014.898260

Boro, P., Naha, B.C., Saikia, D.P., Prakash, C. (2016). A1 and A2 milk & its impact on human health. International Journal of Science and Nature, 7(1), 01-05.

Brambilla, F., Guareschi-Cazzullo, A., Tacchini, C., Musetti, C., Panerai, A.E., Sacerdote, P. (1997). Beta endorphin and cholecystokinin-8 concentrations in peripheral bloodmononuclear cells of autistic children. Neuropsychobiology, 35(1), 1-4. https://doi.org/10.1159/000119322

Buchberger, J. (1995). Genetic polymorphism of milk proteins: Differences between breeds. Bulletin IDF, 304, 5-6. Cade, R., Wagemaker, H., Privette, R.M., Fregly, M.S., Rogers, J., Orlando, J. (1990). The effect of dialysis and diet on schizophrenia. Psychiatry: A World Perspective, 3, 494- 500.

Chia, J. S. J., McRae, J. L., Kukuljan, S., Woodford, K., Elliott, R.B., Swinburn, B., Dwyer, K. M. (2017). A1 betacasein milk protein and other environmental pre-disposing factors for type 1 diabetes. Nutrition & Diabetes, 1(7), 1-7. https://doi.org/10.1038/nutd.2017.16

Chia, J.S.J., McRae, J.L., Enjapoori, A.K., Lefèvre, C.M., Kukuljan, S., Dwyer, K.M. (2018). Dietary Cows’ Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients, 10(9), 1291. https://doi.org/10.3390/nu10091291

Crane, L., Chester, J.W., Goddard, L., Henry, L.A., Hill, E. (2016). Experiences of autism diagnosis: A survey of over 1000 parents in the United Kingdom. Autism, 20(2), 153-162. https://doi.org/10.1177/1362361315573636

Damodaran, S. (1996). Amino Acids, peptides, and proteins. In Fennema, O. R. (Ed.), Food Chemistry (p. 321-425). Marcel Dekker, Inc. New York. ISBN: 0849384737, 9780849384738

Davoodi, S. H., Shahbazi, R., Esmaeili, S., Sohrabvandi, S., Mortazavian, A.M., Jazayeri, S., Taslimi, A. (2016). Health-Related Aspects of Milk Proteins. Iranian Journal of Pharmaceutical Research, 15(3), 573-591, 2016. https://doi.org/10.22037/IJPR.2016.1897

Elliott, R.B., M. Martin, J.M. (1984). Dietary protein: a trigger of insulin-dependent diabetes in the BB rat? Diabetologia, 26(4), 297-299. https://doi.org/10.1007/BF00283653

Elliott, R.B., Wasmuth, W.H., Bibby, N.J., Hill, J.P. (1997). The role of β-casein variants in the induction of insulin-dependent diabetes in the non-obese diabetic mouse and humans. Food and Agriculture Organization, Brussels, Belgium, IDF Special Issue, No. 9702, 445-453. https://doi.org/10.1007/s001250051

Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H., O’Mahony, J.A. (2015). Dairy Chemistry and Biochemistry (p. 584). Second Edition, Switzerland: Springer, Cham. ISBN: 978-3-319-14892-2. https://doi.org/10.1007/978-3-319-14892-2

Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H. (2017). Fundamentals of cheese science (p. 799). Boston: Springer, US. ISBN: 978-1-4899-7681-9 https://doi.org/10.1007/978-1-4899-7681-9

Gimeno, S.G., de Souza, J.M. (1997). IDDM and milk consumption. A case-controlstudy in Sao Paulo, Brazil. Diabetes Care, 20(8), 1256–1260. https://doi.org/10.2337/diacare.20.8.1256

Jaiswal, K.P., De, S., Sarsavan, A. (2014). Review on bovine beta-casein (A1, A2) gene polymorphism and their potentially hazardous on human health. International Journal of Environment & Animal Conservation, 3(1), 1-12.

Jarmołowska, B., Sidor, K., Iwan, M., Bielikowicz, K., Kaczmarski, M., Kostyra, E., Kostyra, H. (2007). Changes of β-casomorphin content in human milk during Lactation. Peptides, 28, 1982-1986. https://doi.org/10.1016/j.peptides.2007.08.002

Kadam, B.R., Ambadkar, R.K., Rathod, K.S., Pandiyan, C. (2017). A1/A2 milk and human health: A brief review. Journal of Environment and Bio-Sciences, 31(2), 357-362.

Kamiński, S., Kamiński, A., Kostyra, E. (2007). Polymorphism of bovine beta-casein and its potential effect on human health. Journal of Applied Genetics, 48(3), 189-198. https://doi.org/10.1007/BF03195213

Knip, M., Virtanen, S.M., Seppa, K., Ilonen, J., Savilahti, E., Vaarala, O., Reunanen, A., Teramo, K., Hämäläinen, A.M., Paronen, J., Dosch, H.M., Hakulinen, T., Akerblom, H.K. (2010a). Dietary intervention in infancy and later signs of beta-cell autoimmunity. New England Journal of Medicine, 363(20), 1900-1908. https://doi.org/10.1056/NEJMoa1004809

Knip, M., Virtanen, S.M., Akerblom,, H.K. (2010b). Infant feeding and the risk of type 1 diabetes. American Journal of Clinical Nutrition, 91(5), 1506S-1513S. https://doi.org/10.3945/ajcn.2010.28701C

Knip, M., Akerblom, H.K., Becker, D., Dosch, H.M., Dupre, J., Fraser, W., Howard, N., Ilonen, J., Krischer, J.P., Kordonouri, O., Lawson, M.L., Palmer, J.P., Savilahti, E., Vaarala, O., Virtanen, S.M. (2014). Hydrolyzed infant formula and early beta-cell autoimmunity: a randomized clinical trial. Journal of the American Medical Association, 311, 2279-2287. https://doi.org/10.1001/jama.2014.5610

Kost, N.V., Sokolov, O.Y., Kurasova, O.B., Dmitriev, A.D., Tarakanova, J.N., Gabaeva, M.V., Zolotarev, Y.A., Dadayan, A.K., Grachev, S.A., Korneeva, E.V., Mikheeva, I.G., Zozulya, A.A. (2009). β-Casomorphins-7 in infants on different type of feeding and different levels of psychomotor development. Peptides, 30, 1854-1860. https://doi.org/10.1016/j.peptides.2009.06.025

Lamb, M.M., Miller, M., Seifert, J.A., Frederiksen, B., Kroehl, M., Rewers, M., Norris, J.M. (2015). The effect of childhood cow's milk intake and HLA-DR genotype on risk of islet autoimmunity and type 1 diabetes: The Diabetes Autoimmunity Study in the Young. Pediatr Diabetes, 16(1), 31- 38. https://doi.org/10.1111/pedi.12115

Laugesen, M., Elliott, R.B. (2003). Ischaemic heart disease, type 1 diabetes, and cow milk A1 β-casein. New Zealand Medical Journal, 116(1168), 1-19.

Leboyer, M., Philippe, A., Bouvard, M., Guilloud-Bataille, M., Bondoux, D., Tabuteau, F., Feingold, J., Mouren-Simeoni, M.C., Launay, J.M. (1999). Whole blood serotonin and plasma beta-endorphin in autistic probandsand their first-degree relatives. Biological Psychiatry, 45(2), 158-163. https://doi.org/10.1016/S0006-3223(97)00532-5

Lorenzo, J.M., Munekata, P.E.S., Gómez, B., Barba, F.J., Mora, L., Pérez-Santaescolástica, C., Toldrá, F. (2018). Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science & Technology, 79, 136- 147. https://doi.org/10.1016/j.tifs.2018.07.003

Mallepalli, S., Kumar, R.K., Sriram, N. (2017). Difference between A1 and A2 milk: Risk of A1 milk. International Journal of Allied Medical Sciences and Clinical Research, 5(1), 163-167.

McLachlan, C.N. (2001). B-kazein A1, ischaemic heart disease mortality and other illness. Medical Hypotheses, 56(2), 262-267. https://doi.org/10.1054/mehy.2000.1265

Mehta, B.M (2015). Chemical composition of milk and milk products. In Cheung, P. C. K., Mehta, B. M. (Eds): Handbook of Food Chemistry, (p. 511-553), Berlin: Springer-Verlag. ISBN: 978-3-642-36604-8 https://doi.org/10.1007/978-3-642-36605-5

Mohanty, D.P., Mohapatra, S., Misra, S., Sahu, P.S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences, 23(5), 577-583. https://doi.org/10.1016/j.sjbs.2015.06.005

Nagamitsu, S., Matsuishi, T., Kisa, T., Komori, H., Miyazaki, M., Hashimoto, T., Yamashita, Y., Ohtaki, E., Kato, H (1997). CSF beta-endorphin levels in patients with infantile autism. Journal of Autism and Developmental Disorder, 27(2), 155-163.

Nguyen, D.D., Solah, V.A., Johnson, S.K., Charrois, J.W. A., Busetti, F. (2014). Analytical Methods Isotope dilution liquid chromatography–tandem mass spectrometryfor simultaneous identification and quantification of beta-casomorphin 5 and beta-casomorphin 7 in yoghurt. Food Chemistry, 146, 345-352. https://doi.org/10.1016/j.foodchem.2013.09.057

Nguyen, D.D., Johnson, S.K., Busetti, F., Solah, V.A. (2015). Formation and degradation of beta-casomorphins in dairy processing. Critical Reviews in Food Science and Nutrition, 55(14), 1955-1967. https://doi.org/10.1080/10408398.2012.740102

Ni, W., Tsuda, Y., Sakono, M., Imaizumi, K. (1998). Dietary soy protein isolate, compared with casein, reduces atherosclerotic lesion area in apolipoprotein E-deficient mice. Journal of Nutrition, 128(11), 1884-1889. https://doi.org/10.1093/jn/128.11.1884

Nongonierma, A.B., FitzGerald, R.J. (2015). The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. Journal of Functional Foods, 17, 640-656. https://doi.org/10.1016/j.jff.2015.06.021

Pal, S., Woodford, K., Kukuljan, S., Ho, S. (2015). Milk intolerance, beta-casein and lactose. Nutrients, 7(9), 7285- 7297. https://doi.org/10.3390/nu7095339

Parashar, A., Saini, R.K. (2015). A1 Milk and its controversy-A review. International Journal of Bioassays, 4(12), 4611-4619. https://doi.org/10.21746/ijbio.2015.12.007

Park, Y.W., Nam, M.S. (2015). Bioactive peptides in milk and dairy products: A Review. Korean Journal for Food Science of Animal Resources, 35(6), 831-840. https://doi.org/10.5851/kosfa.2015.35.6.831

Patton, S. (2017). Milk: Its remarkable contribution to human health and well-being (p. 276), New York: Routledge. ISBN: 1412805112 https://doi.org/10.4324/9781315124513

Priyadarshini, P., Mishra, C., Mishra, B., Swain, K., Rout, M., Mishra, S.P. (2018). Impact of milk protein on human health: A1 verses A2. International Journal of Chemical Studies, 6(1), 531-535. https://doi.org/10.22271/chemi

Shattock, P., Whiteley, P. (2002). Biochemical aspects in autism spectrum disorders: updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opinion on Therapeutic Targets, 6(2), 175-183. https://doi.org/10.1517/14728222.6.2.175

Sokolov, O., Kost, N., Andreeva, O., Korneeva, E., Meshavkin, V., Tarakanova, Y., Dadayan, A., Zolotarev, Y., Grachev, S., Mikheeva, I., Varlamov, O., Zozulya, A. (2014). Autistic children display elevated urine levels of bovinecasomorphin-7 immunoreactivity. Peptides, 56, 68-71. https://doi.org/10.1016/j.peptides.2014.03.007

Sun, Z., Cade, J.R. (1999). A peptide found in schizophrenia and autism causes behavioral changes in rats. Autism, 3(1), 85-95. https://doi.org/10.1177/1362361399003001007

Sun, Z., Cade, J.R., Fregly, M.J., Privette, R.M. (1999). β-casomorphin induces Fos-like immunoreactivity in discrete brain regions relevant to schizophrenia and autism. Autism, 3(1), 67-83. https://doi.org/10.1177/1362361399003001006

Sun, Z., Zhang, Z., Wang, X., Cade, R., Elmer, Z., Fregly, M. (2003). Relation of beta-casomorphin to apnea in sudden infant death syndrome. Peptides, 24, 937-943. https://doi.org/10.1016/S0196-9781(03)00156-6

Tailford, K.A., Berry, C.L., Thomas, A.C., Campbell, J.H. (2003). A casein variant in cow's milk is atherogenic. Atherosclerosis, 170(1), 13-9. https://doi.org/10.1016/S0021-9150(03)00131-X

Tordjman, S., Anderson, G.M., Botbol, M., Brailly-Tabard, S., Perez-Diaz, F., Graignic, R., Carlier, M., Schmit, S., Rolland, A.C., Bonnot, O., Trabado, S., Roubertoux, P., Bronsard, G. (2009). Pain reactivity and plasma beta-endorphin in children and adolescents with autistic disorder. PLOS ONE, 4(8), e5289. https://doi.org/10.1371/journal.pone.0005289

Ul Haq, M.R., Kapila, R., Saliganti, V. (2014a). Consumption of β-casomorphins-7/5 induce inflammatory immune response in mice gut through Th2 pathway. Journal of Functional Foods, 8(1), 150-160. https://doi.org/10.1016/j.jff.2014.03.018

Ul Haq, M.R., Kapila, R., Sharma, R., Saliganti, V., Kapila, S. (2014b). Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. European Journal of Nutrition, 53(4), 1039-1049. https://doi.org/10.1007/s00394-013-0606-7

Ul Haq, M.R., Kapila, R., Kapila, S. (2015). Release of βcasomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from Indian crossbred cattle (Karan Fries). Food Chemistry, 168, 70-79. https://doi.org/10.1016/j.foodchem.2014.07.024

Virtanen, S.M., Rasanen, L., Ylonen, K., Aro, A., Clayton, D., Langholz, B., Pitkäniemi, J., Savilahti, E., Lounamaa, R., Tuomilehto, J., Åkerblom, H.K. (1993). Early introduction of dairy products associated with increased risk of IDDM in Finnish children. The childhood in diabetes in Finland study group. Diabetes, 42(12), 1786-1790. https://doi.org/10.2337/diab.42.12.1786

Virtanen, S.M. (2014). Hydrolyzed infant formula and early beta-cell autoimmunity: A randomized clinical trial. Journal of the American Medical Association, 311, 2279-2287. https://doi.org/10.1001/jama.2014.5610

Wasilewska, J., Sienkiewicz-Szłapka, E., Kuźbida, E., Jarmołowska, B., Kaczmarski, M., Kostyra, E. (2011). The exogenous opioid peptides and DPPIV serum activity in infants with apnoea expressed as apparent life threatening events (ALTE). Neuropeptides, 45(3), 189-195. https://doi.org/10.1016/j.npep.2011.01.005

Zeng, L., Mathew, A. V., Byun, J., Atkins, K.B., Brosius, F.C., Pennathur, S. (2018). Myeloperoxidase-derived oxidants damage artery wall proteins in an animal model of chronic kidney disease–accelerated atherosclerosis. Journal of Biological Chemistry, 293(19), 7238-7249. https://doi.org/10.1074/jbc.RA117.000559

Zikakis, J.P., Haenlein, G.F., Hines, H.C., Mather, R.E., Tung, S. (1974). Gene frequencies of electrophoretically determined polymorphisms in Guernsey blood and milk. Journal of Dairy Science, 57(4), 405-410. https://doi.org/10.3168/jds.S0022-0302(74)84904-0

Kaynak Göster