Farelerde modifiye evaporatif kuru göz (KG) modelinin bazı klinik parametreler yönünden değerlendirilmesi

Kuru göz sendromu (KGS); oküler yüzeye hasar verme potansiyeline sahip olan yangı, gözyaşı film osmolaritesinin artışı, instabilitesi ve görme bozukluğu ile karakterize multifaktöriyel bir hastalıktır. KGS’li olguların yaklaşık %40’ı evaporatif stres faktörleri tarafından oluşmaktadır. Bundan dolayı son dönemlerde birçok çalışma, evaporatif kuru göz modeli üzerine yoğunlaşmaktadır. Mevcut çalışmada, bir kuru göz kabini (KGK) (relatif nemi (RN) %30’dan düşük, sıcaklığı 21-25°C) tasarlanmıştır. 14 adet 8 haftalık BALB-C ırkı dişi fare; deney grubu 3 bölmeli KGK’ya, kontrol grubu ise oda şartlarındaki (RN %50-80, sıcaklığı 21-23°C) normal kafeslere yerleştirilmek üzere 2 eşit gruba ayrılmıştır. Göz kırpma sayısı, fenol kırmızısı pamuk ipliği (FKPT) ve gözyaşı kırılma zamanı (GKZ) testi gibi parametreler 2 hafta aralıklarla (0, 2, 4, 6) değerlendirilmiştir. Deney grubu verilerinin ölçüm zamanlarına göre değerlendirilmesinde; 0. haftaya göre göz kırpma sayı ortalamalarının 4 ve 6. haftalarda arttığı, FKPT ve GKZ ortalamalarının ise 2, 4 ve 6. haftalarda sürekli olarak azaldığı kaydedilmiştir. Kontrol ve deney grupları arasında çalışmanın 0. haftasında tüm parametreler yönünden istatistiksel açıdan önemsiz olan fark (P>0.05); 2, 4 ve 6. haftalarda göz kırpma sayısı ile GKZ, 4 ve 6. haftalarda ise FKPT yönünden önemli bulunmuştur (P

Evaluation of modified dry eye (DE) model in mice with different clinical parameters

Dry eye syndrome (DES) is a multifactorial disorder characterized with inflammation, tear film hyperosmolarity and instability and visual impairment, with a potential to induce ocular surface damage. About 40 % of DES cases are induced by evaporative stres factors. Thus, many studies recently concentrated on evaporative dry eye models. In the present study, a dry eye cabinet (DEC) (relative humidity (RH) 0.05) in terms of all parameters on week 0 between control and experimental groups, was found significant (P

___

  • 1. Report of the Definition, Classification, Management and Therapy Subcommittee of the International Dry Eye Work Shop, 2007; Ocul Surf 5(2): 1-163.
  • 2. Foulks GN. Pharmacological management of dry eye in the elderly patient. Drugs Aging 2008; 25(2): 105-118.
  • 3. Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol 2003; 136(2): 318-326.
  • 4. Hartley C, Williams DL, Adams VJ. Effect of age, gender, weight, and time of day on tear production in normal dogs. Veterinary Ophthalmology 2006; 9(1): 53-55.
  • 5. Kaswan RL, Salisbury MA, Lothrop CD. Interaction of age and gender on occurrence of canine keratoconjunctivitis sicca. Progress in Veterinary and Comparative Ophthalmology 1991; 1: 93-97.
  • 6. Gelatt KN. Veterinary Ophthalmology. 2nd Edition, London: Lea & Febiger, 1991.
  • 7. Kjaergaard SK, Hempel-Jørgensen A, Mølhave L, et al. Eye trigeminal sensitivity, tear film stability and conjunctival epithelium damage in 182 non-allergic, non-smoking Danes. Indoor Air 2004; 14(3): 200-207.
  • 8. Rashid S, Jin Y, Ecoiffier T, et al. Topical omega-3 and omega-6 fatty acids for treatment of dry eye. Arch Ophthalmol 2008; 126(2): 219-225.
  • 9. Perry HD. Dry eye disease: Pathophysiology, classification, and diagnosis. Am J Manag Care 2008; 14(3 Suppl): 79-87.
  • 10. Chen Q, Wang J, Shen M, et al. Lower volumes of tear menisci in contact lens wearers with dry eye symptoms. Invest. Ophthalmol Vis Sci 2009; 50(7): 3159-3163.
  • 11. Ang RT, Dartt DA, Tsubota K. Dry eye after refractive surgery. Curr Opin Ophthalmol 2001; 12(4): 318-322.
  • 12. Manaviat MR, Rashidi M, Afkhami-Ardekani M, Shoja MR. Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmol 2008; 2(8): 10.
  • 13. De Paiva CS, Pflugfelder SC. Rationale for antiinflammatory therapy in dry eye syndrome. Arq Bras Oftalmol 2008; 71(6 Suppl): 89-95.
  • 14. Gumus K, Cavanagh DH. The role of inflammation and antiinflammation therapies in keratoconjunctivitis sicca. Clin Ophthalmol 2009; 3: 57-67.
  • 15. Kymionis GD, Bouzoukis DI, Diakonis VF, Siganos C. Treatment of chronic dry eye: Focus on cyclosporine. Clin Ophthalmol 2008; 2(4): 829-836.
  • 16. Barabino S, Shen L, Chen L, et al. The controlledenvironment chamber: a new mouse model of dry eye. Invest Ophthalmol Vis Sci 2005; 46(8): 2766-2771.
  • 17. Burgalassi S, Panichi L, Chetoni P, Saettone MF, Boldrini E. Development of a simple dry eye model in the albino rabbit and evaluation of some tear substitutes. Ophthalmic Res 1999; 31(3): 229-235.
  • 18. Dursun D, Wang M, Monroy D, et al. A mouse model of keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci 2002; 43(3): 632-638.
  • 19. Lekhanont K, Park CY, Smith JA, et al. Effects of Topical Anti-inflammatory Agents in a Botulinum Toxin B-İnduced Mouse Model of Keratoconjunctivitis Sicca. Journal of Ocular Pharmacology and Therapeutics, 2007; 23(1): 27- 34.
  • 20. Maitchouk DY, Beuerman RW, Ohta T, Stern M, Varnell RJ. Tear production after unilateral removal of the main lacrimal gland in squirrel monkeys. Arch Ophthalmol 2000; 118(2): 246-252.
  • 21. Suwan-apichon O, Rizen M, Rangsin R, Herretes S, et al. Botulinum toxin B-induced mouse model of keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci 2006; 47(1): 133-139.
  • 22. Sullivan DA, Allansmith MR. Hormonal modulation of tear volume in the rat. Exp Eye Res 1986; 42(2): 131-139.
  • 23. Chen W, Zhang X, Zhang J, et al. A murine model of dry eye induced by an intelligently controlled environmental system. Invest. Ophthalmol. Vis Sci 2008; 49(4): 1386- 1391.
  • 24. Barabino S, Dana MR. Animal Models of dry eye: A critical Assessment of Opportunities and Limitations. Investigative Opthalmology & Visual Science 2004; 45(6): 1641-1646.
  • 25. De Paiva CS, Villarreal AL, Corrales RM, et al. Dry eyeinduced conjunctival epithelial squamous metaplasia is modulated by interferon-gamma. Invest Ophthalmol Vis Sci 2007; 48(6): 2553-2560.
  • 26. Yoon KC, De Paiva CS, Qi H, et al. Expression of Th-1 chemokines and chemokine receptors on the ocular surface of C57BL/6 mice: Effects of desiccating stress. Invest Ophthalmol Vis Sci 2007; 48(6): 2561-2569.
  • 27. Yoon KC, De Paiva CS, Qi H, et al. Desiccating environmental stress exacerbates autoimmune lacrimal keratoconjunctivitis in non-obese diabetic mice. J Autoimmun 2008; 30(4): 212-221.
  • 28. Gelatt KN. Essentials of veterinary ophthalmology. London: Lippincott Wilkins, 2000.
  • 29. Optometric clinical practice guide line: Care of the patient with ocular surface disorders. http://www.aoa.org/documents/CPG-10.pdf. 2002 13.03. 2008.
  • 30. Foster CS, Yuksel E, Anzaar F, Ekong AS. Dry Eye Syndrome.eMedicineSpecialties>Ophthalmology>Lacrimal System. Updated: Nov 15, 2010.
  • 31. Berdoulay A, English RV, Nadelstein B. Effect of topical % 0.02 tacrolimus aqueous suspension on tear production in dogs with keratokonjunctivitis sicca. Veterinary Ophthalmology 2005; 8(4): 225-226.
  • 32. Bron AJ. Diagnosis of dry eye. Surv Ophthalmol 2001; 45 Suppl 2: 221-226.
  • 33. Barabino S, Chen W, Dana MR. Tear film and ocular surface tests in animal models of dry eye: Uses and limitations. Exp Eye Res 2004; 79(5): 613-621.
  • 34. Savini G, Prabhawasat P, Kojima T, et al. The challenge of dry eye diagnosis. Clin Ophthalmol 2008; 2(1): 31-55.
  • 35. Johnson ME, Murphy PJ. The Effect of instilled fluorescein solution volume on the values and repeatability of TBUT measurements. Cornea 2005; 24(7): 811-817.