Biochemical, Histopathological, Immunohistochemical Evaluation of Ischemic Preconditioning and Krill Oil Effects

Bu deneysel çalışmada, bir sıçan modelinde oluşturulan iskelet kası iskemi-reperfüzyon hasarında krill yağı ve iskemik önkoşullama (İÖK) etkinliği, biyokimyasal, histopatolojik ve immünohistokimyasal parametreler yardımıyla araştırıldı. Ekstremite iskemisi, femoral artere klemp konarak sağlandı. Ratlar (n=50) beş eşit gruba ayrıldı. Gruplarda ise iskemik önkoşullama protokolü ve krill yağı uygulamasının etkinliği birlikte ve ayrı olarak değerlendirildi. Malondialdehit (MDA), nitrik oksit (NO) seviyeleri ve süperoksit dismutaz (SOD), glutatyon peroksidaz (GSH-Px), katalaz (CAT) aktiviteleri ölçüldü. Işık mikroskop görüntüleri, histolojik hasar bulguları ve semikantitatif analiz bulguları ile desteklendi. KO ve İÖK uygulanan sıçanlarda İ/R grubuna göre oksidatif stresin biyokimyasal belirteçlerin iyileştiği görüldü. İ/R ve İÖK uygulanan grupların hasar seviyelerinde ise önemli oranda azalma tespit edildi. Semikantitatif HSCORE analizi ile İ/R ve İÖK gruplarına kıyasla tedavi gruplarında immünreaktivitenin arttığı ortaya konuldu. İskemik önkoşullama protokolünün ve krill yağı verilişinin iskemi-reperfüzyon hasarına karşı güçlü bir koruma sağladığı sonucuna varılmıştır.

İskemi/Reperfüzyon Modelinde İskemik Önkoşullama ve Krill Yağı Etkisinin Biyokimyasal, Histopatolojik, İmmunohistokimyasal Değerlendirmesi

The aim of the present study was to evaluate the protective effects of krill oil (KO) administration and ischemic preconditioning (IPC) protocol using biochemical, histopathological and immunohistochemical parameters in a rat model. Limb ischemia was achieved by clamping the femoral arteries. Fifty rats were divided into five groups (n=50). Effect of IPC strategy and drugreinforcement protocol was evaluated together or separately in the experimental groups. Malondialdehiyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured. Light microscopic images were supported by histological damage score findings and semiquantitative analysis findings of ?-actin protein. Biochemical markers of oxidative stress were improved in KO and IPC groups compared with I/R group. The administration of IPC and KO resulted in a significant decrease in the damage score, 40% reduction of damage levels. Semiquantitative H-score analysis revealed that immunoreactivity increased in the treatment groups compared with I/R and IPC groups. It is concluded that ischemicpreconditioning protocol and pre-treatment with KO provides potent protection ischemiareperfusion injury.

___

  • 1. Douzinas EE, Livaditi O, Tasoulis MK, et al. Nitrosative and oxidative stresses contribute to post-ischemic liver injury following severe hemorrhagic shock: The role of hypoxemic resuscitation. PLoS ONE 2012; 7: 3.
  • 2. Jaeschke H. Molecular mechanisms of hepatic ischemia reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284: 15-26.
  • 3. Arkadopoulos N, Defterevos G, Nastos C, et al. Development of a porcine model of post-hepatectomy liver failure. J Surg Res 2011; 170: 233-242.
  • 4. Wilhelm J. Metabolic aspects of membrane lipid peroxidation. Acta Univ Carol Med Monogr 1990; 137: 1- 53.
  • 5. Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacol 2001; 40: 959-997.
  • 6. Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol 2000; 153: 83-104.
  • 7. Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: A significant role for melatonin. J Pineal Res 2004; 36: 1-9.
  • 8. Chandra K, Salman AS, Mohd A, Sweety R, Ali KN. Protection against FCA induced oxidative stress induced DNA damage as a model of arthritis and in vitro antiarthritic potential of costus speciosus rhizome extract. Int J Pharmacognosy Phytochem Res 2015; 7: 383-389.
  • 9. Deutsch L. Evaluation of the effect of neptune krill oil on chronic inflammation and arthritic symptoms. J Am Coll Nutr 2007; 26: 39-48.
  • 10. Mellouk Z, Agustina M, Ramirez M, Pena K, Arivalo J. The therapeutic effects of dietary krill oil (Euphausia superba) supplementation on oxidative stress and DNA damages markers in cafeteria diet-overfed rats. Ann Cardiol Angeiol (Paris) 2016; 65: 223-228.
  • 11. Webster RS, Montero EF, Fagundes DJ, et al. The role of ischemic preconditioning at the gracilis muscle of rats in the early phase of reperfusion injury. Acta Cir Bras 2006; 21: 80-86.
  • 12. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124-1136.
  • 13. Gürke L, Mattei A, Chaloupka K, et al. Mechanisms of ischemic preconditioning in skeletal muscle. J Surg Res 2000; 94: 18-27.
  • 14. Wibrand K, Berge K, Messaoudi M, et al. Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis 2013; 12: 6.
  • 15. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4- hydroxynonenal. Methods Enzymol 1990; 186: 407-421.
  • 16. Cortas NK, Wakid NW. Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin Chem 1990; 36: 1440-1443.
  • 17. Aebi H. Catalase. In: Bergmeyer U (Editor). Methods of Enzymatic Analysis. New York and London: Academic Press 1974; 673-677.
  • 18. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34: 497- 500.
  • 19. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158-169.
  • 20. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265-275.
  • 21. Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology - a systematic review. Klopfleisch BMC Vet Res 2013; 9: 123.
  • 22. Sati L, Seval-Celik Y, Demir R. Lung surfactant proteins in the early human placenta. Histochemistry and Cell Biology 2010; 133: 85-93.
  • 23. Zahir TM, Zahir KS, Syed SA, Restifo RJ, Thomson JG. Ischemic preconditioning of musculocutaneous flaps: Effects of ischemia cycle length and number of cycles. Ann Plast Surg 1998; 40: 430.
  • 24. Mounsey RA, Pang CY, Boyd JB, Forrest C. Augmentation of skeletal muscle survival in the latissimus dorsi porcine model using acute ischemic preconditioning. J Otolaryngol 1992; 21: 315-320.
  • 25. Lepore DA, Morrison WA. Ischemic preconditioning: Lack of delayed protection against skeletal muscle ischemia reperfusion. Microsurg 2000; 20: 350.
  • 26. Wang WZ, Anderson G, Maldonado C, Barker J. Attenuation of vasospasm and capillary no-reflow by ischemic preconditioning in skeletal muscle. Microsurg 1996; 17: 324-329.
  • 27. Kidd PM. Omega-3 DHA and EPA for cognition, behavior, and mood: Clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev 2007; 12: 207-227.
  • 28. Rupp H. Omega-3 fatty acids in secondary prevention after myocardial infarct. Clin Res Cardiol 2006; 95: 12-16.
  • 29. Gamoh S. Krill-derived phospholipids rich in n-3 fatty acid improve spatial memory in adult rats. J. Agric Sci 2011; 3: 3-12.
  • 30. Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G. Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmuneprone NZBxNZW F1 mice. Lipids 1994; 29: 561-568.
  • 31. Qi W, Kan SL. Protective effect of ischemic preconditioning duration against ischemia-reperfusion injury of skeletal muscle in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2005; 19: 274-7.
  • 32. Kocman EA, Ozatik O, Sahin A, et al. Effects of ischemic preconditioning protocols on skeletal muscle ischemiareperfusion injury. J Surg Res 2015; 193: 942-52.
  • 33. Fridovich I. Superoxide dismutases. Annu Rev Biochem 1975; 44: 147-159.
  • 34. Ono M, Kohda H, Kawaguchi T, et al. Induction of Mnsuperoxide dismutase by tumor necrosis factor, interleukin1 and interleukin-6 in human hepatoma cells. Biochem Biophys Res Commun 1992; 182: 1100-1107.
  • 35. Dougall WC, Nick HS. Manganese superoxide dismutase: A hepatic acute phase protein regulated by interleukin-6 and glucocorticoids. Endocrinol 1991; 129: 2376-2384.
  • 36. Yoo HY, Chang MS, Rho HM. Heavy metal-mediated activation of the rat Cu/Zn superoxide dismutase gene via a metal-responsive element. Mol Gen Genet 1999; 262: 310-313.
  • 37. Ozyurt H, Ozyurt B, Koca K, Ozgocmen S. Caffeic acid phenethyl ester (CAPE) protects rat skeletal muscle against ischemia-reperfusion-induced oxidative stress. Vascul Pharmacol 2007; 47: 108-112.
  • 38. Tong Z, Yu F, Liu Z, Liang H. Influence of ShuJinHuoXue tablets on ischemia reperfusion injury of animals' skeletal muscle. Molecules 2012; 17: 8494-8505.
  • 39. Chakraborti T, Das S, Mondal M, Roychoudhury S, Chakraborti S. Oxidant, mitochondria and calcium: An overview. Cell Signal 1999; 11: 77-85
  • 40. Okatani Y, Wakatsuki A, Reiter RJ, Enzan H, Miyahara Y. Protective effect of melatonin against mitochondrial injury induced by ischemia and reperfusion of rat liver. Eur J Pharmacol 2003; 469: 145-152.
  • 41. Sener G, Sehirli AO, Keyer-Uysal M, et al. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. J Pineal Res 2002; 32: 120-126.
  • 42. Teruya R, Ikejiri AT, Neto FS, et al. Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion. Acta Cirurgica Brasileira 2013; 28: 848-855.
  • 43. Hernandez LA, Grisham MB, Twohig B, et al. Role of neutrophils in ischemia/reperfusion-induced microvascular injury. Am J Physiol 1987; 253: 699-703.
  • 44. Laurindo FR, Pedro Mde A, Barbeiro HV, et al. Vascular free radical release. Ex vivo and in vivo evidence for a flowdependent endothelial mechanism. Circ Res 1994; 74: 700-709.
  • 45. Chiu JJ, Wung BS, Hsieh HJ, Lo LW, Wang DL. Nitric oxide regulates shear stress-induced early growth response-1. Expression via the extracellular signalregulated kinase pathway in endothelial cells. Circ Res 1999; 85: 238-246.
  • 46. Henderson SA, Lee PH, Aeberhard EE, et al. Nitric oxide reduces early growth response-I gene expression in rat lung macrophages treated with interferon-y and lipopolysaccharide. J Biol Chem 1994; 269: 25239-25242.
  • 47. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol 1996; 271: 1424-1437.
Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi-Cover
  • ISSN: 1308-9323
  • Yayın Aralığı: Yılda 3 Sayı
  • Yayıncı: Prof.Dr. Mesut AKSAKAL