F2 Bölgesinde Sönüm Katsayılarının Karesinin (F2) Büyüklüğünün Düşük Enlemlerdeki Davranışının İncelenmesi

Bu çalışmanın amacı kabul edilen şartlar için belli bir frekansta yerden atmosfere dik gönderilen bir radyo dalgasının ne kadar enerji kaybettiğini araştırmaktır. Bu makalede, iyonkürenin F2 bölgesinde bazı kritik yükseklikler (390, 410, 450, 500, 550 ve 600 km) ve düşük enlemler için iyonküre plazmasında meydana gelen (ordinari, ekstraordinari ve kutuplanmış) dalgaların sönüm katsayılarının karelerinin büyüklüleri teorik olarak hesaplanmıştır. Ordinari ve ekstraordinari dalganın sönüm katsayılarının büyüklüğünün kareleri kabul edilen şartlar için elektron yoğunluğunun enlemle değişimi ile benzerlik göstermekte, kutuplanmış dalga ise farklı bir davranış sergilemektedir. Bu durum kutuplanmış dalganın çarpıcı bir şekilde manyetik alana bağımlılığının bir sonucu olabilir. Bunun yanında kutuplanmış dalganın sönüm katsaysının karesinin diğerlerinden daha büyük olduğundan göz önünde bulundurulan şartlar için daha fazla sönüme uğradığı söylenebilir.

Investigation of the Behavior of the Magnitute of the Square of the Absorbtion Coefficients ın the F2 Region at Low Latitudes

The aim of this study is to investigate how much energy a radio wave, sent perpendicular to the atmosphere at a certain frequency, loses for accepted conditions. This article is theoretically calculated for the magnitude of the squares of the absorbing coefficients of waves (ordinary, extraordinary and polarized) waves that occur only in the ionospheric plasma for some critical heights (390, 410, 450, 500, 550 and 600 km) in the F2 region of the ionosphere and low latitudes. The squares of the magnitude coefficients of the ordinary and extraordinary wave are similar to the latitude variation of the electron density for the accepted conditions, and the polarized wave behaves differently. This may sharply be the result of the polarized wave of dramatically dependence on the magnetic field. On the other hand, it can be said that the damping coefficient of the polarized wave is greater than the squared damping for the conditions considered.

___

  • [1] Sagir, S., Atici, R., Akalin, Y., Yesil, A. The assessment in terms of QBO of NeQuick 2 model, The Egyptian Journal of Remote Sensing and Space Science 2019; 22 (1): 67-72.
  • [2] Rishbeth, H., How the Thermospheric Circulation Affects the Ionospheric F2-Layer, Journal of Atmospheric and Solar Terrestrial Physics 1998; 60: 1385-1402.
  • [3] Timocin, E., Unal, I., Yesil, A. The Effect of the Midlatitude Electron Density Trough on the Ionospheric Conductivities, Iranian Journal of Science and Technology, Transactions A: Science 2019; 43 (1): 297-307.
  • [4] Yesil, A., Kurt, K. Calculation of electric field strength in the ionospheric F-region, Thermal Science 2019; 22 (Suppl. 1): 159-164.
  • [5] Timocin, E., Yesil, A., Unal, I. The effect of the geomagnetic activity to the hourly variations of ionospheric foF2 values at low latitudes, Arabian Journal of Geosciences 2014; 7 (10): 4437-4442.
  • [6] Unal, I., Senalp, E.T., Yeşil, A., Tulunay, Y., Tulunay, E. Two possible approaches for ionospheric forecasting to be employed along with the IRI model, URSI General Assembly and Scientific Symposium. 2011; 1-4.
  • [7] Swanson, D.G. Plasma waves, Academic Press, New York, 1989.
  • [8] Whitten, R.C., Poppoff, I.G. Fundamentals of Aeoronomy, John Willey and Sons, New York, 1971.
  • [9] Budden, K.G. The Propagation of Radio Waves, Cambridge University Press, Cambridge, 1988.
  • [10] Budden, K.G., Stott, G.F. Rays in magneto-ionic theory-II, Journal of Atmospheric and Solar Terrestrial Physics 1980; 42: 791–800.
  • [11] Kurt, K., Yeşil, A., Sagir, S., Atici, R. The relationship of stratospheric QBO with the difference of measured and calculated NmF2, Acta Geophysica 2016; 64 (6): 2781-2793.
  • [12] Unal, I., Senalp, E.T., Yeşil, A., Tulunay, Y., Tulunay, E. Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting, Radio Science 2011; 46 (01): 1-10.
  • [13] Yesil, A., Sagir S., Kurt, K. The Behaviour of the Classical Diffusion Tensor for Equatorial Ionospheric Plasma, Journal of Science 2016; (13) 123-127.
  • [14] Yesil, A., Unal, I. Electromagnetic Wave Propagation in Ionospheric Plasma, Behaviour of Electromagnetic Waves in Different Media and Structures 2011; 1-189.
  • [15] Yesil, A., Sagir, S. Updating Conductivity Tensor of Cold and Warm Plasma for Equatorial Ionosphere F2-Region in The Northern Hemisphere, Iranian Journal of Science and Technology, Transactions A: Science 2019; 43 (1): 315-320.
  • [16] Sagir, S., Yesil. A. The Relation Between the Refractive Index of the Equatorial Ionospheric F2 Region and Long-Term Solar Indices, Wireless Personal Communications 2018; 102 (1): 31-40.
  • [17] Yesil, A., Sagir, S., Kurt, K. The Behavior of the Classical Diffusion Tensor for Mid-Latitude Ionospheric Plasma, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2016; 5 (2).
  • [18] Sagir, S., Karatay, S., Atici, R., Yesil A., Ozcan, O. The relationship between the Quasi Biennial Oscillation and Sunspot Number, Advances in Space Research 2015; 55(1): 106-112.
  • [19] Yesil, A. The Effect of the cold plasma on the propagation of the electromagnetic waves, Firat University, Elazig, 1995.
  • [20] Yesil, A. Unal, İ. The Electromagnetic waves in the fully ionozed plasma, Firat University, Elazig, 2002.
  • [21] Yesil, A. The Effect of the Electron Temperature on the Electric Polarization Coefficient of Ionospheric Plasma, International Journal of Science & Technology 2016; 1 (2): 125-130.
  • [22] Kaladze, T., Tsamalashvili, L., Kaladze, D., Ozcan, O., Yesil, A., Inc, M. Modified KdV equation for magnetized Rossby waves in a zonal flow of the ionospheric E-layer, Physics Letters A 2019; 383 (32): 125888
  • [23] Richard, F. The Physics of Plasma, CRC press, New York, 2014.