Tek Kristal Formdaki $FeTe_{0.5}Se{0.5}$ Süperiletken Sistemine In (% 5’ e kadar) Katkısının Yapısal ve Elektriksel İletim Özelliklerine Etkisi

Bu çalışmada, Self-flux metodu ile tek kristal formda üretilen ve %5’ e kadar In katkılanmış $FeTe_{0.5}Se{0.5}$ sisteminin $(FeTe_{0.5}Se_{0.5}+%1, FeTe{0.5}Se{0.5}+%3, FeTe{0.5}Se{0.5}+%5)$ yapısal ve elektriksel iletim özelliklerini incelenmiştir. $FeTe{0.5}Se{0.5}$ sistemi içerisinde oldukça düşük erime sıcaklığına sahip olan İndiyum’un kristal oluşumunda bir akı görevi gördüğü ve aynı zamanda yapıda homojen bir dağılım sergilediği bulunmuştur. Ancak In katkılama oranı arttıkça $FeTe_{0.5}Se{0.5}$ sisteminin süperiletkenlik özelliklerinin olumsuz yönde değiştiği görülmüştür. Katkılama oranlarına göre en iyi değerin, Tcbaşlangıç ve Tcsıfır değerleri, %1 In katkılı örnekte 16.07 K ve 14.80 K olarak bulunmuştur. Daha yüksek In katkı oranları için ise her iki değerinde azalma eğilimine girdiği bulunmuştur. Werthamer-Halfand-Hohenberg (WHH) eşitliği ile manyetodirenç eğrilerinden üst kritik alan değerleri hesaplanmış ve en iyi değerin %1 In katkısı için olduğu bulunmuş, yüksek katkılama oranları için de değerin azaldığı gözlenmiştir. Arrhenius eşitliği ile belirlenen, vorteks oluşum ve hareketlilik aktivasyon enerjisi 0 Teslada %1, %3 ve %5 In katkılı örnekler için 1822, 515, 457eV’ olduğu bulunmuştur. Elde edilen sonuçlar, $FeTe{0.5}Se{0.5}$ sistemine In katkısının artan oranlarının süperiletkenlik mekanizmasını olumsuz yönde etkilediğini göstermiştir.

Effect of In (up to 5%) addition on Electrical Transport Properties of $FeTe_{0.5}Se{0.5}$ Superconductor System in Single Crystal Form

In this study, structural and electrical transport properties of $FeTe_{0.5}Se{0.5}$ system $(FeTe{0.5}Se{0.5}+%1, FeTe{0.5}Se{0.5}+%3,FeTe{0.5}Se{0.5}+%5)$ fabricated in single crystal form by Self-flux method. Indium, which has a very low melting temperature within the$FeTe_{0.5}Se{0.5}$ system, has been found to act as a flux in crystal formation and exhibits a homogeneous distribution in the structure. However, as the In addition rate increased, the superconducting properties of the $FeTe_{0.5}Se{0.5}$ system changed negatively. According to the addition rates, the best value, Tconset and Tczero values were found as 16.07 K and 14.80 K for sample with 1% In addition. For higher In addition rates, it was found that both values tended to decrease. Upper critical field values were calculated from magnetoresistance curves by Werthamer-Halfand-Hohenberg (WHH) equation and it was found that the best value was for the addition of 1% In, and it was observed that the value decreased for high addition rates. The vortex formation and mobility activation energy determined by Arrhenius equation was found to be 1822, 515, 457 eV for samples with 1%, 3% and 5% In addition at zero Tesla. The obtained results showed that increasing rates of In addition to $FeTe_{0.5}Se{0.5}$ system negatively affect the superconducting mechanism.

___

  • [1] Hsu FC, Luo JY, Yeh KW, vd. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA. 2008; 105, 14262.
  • [2] Onar K, Fese-Tabanlı Yeni Nesil Süperiletken Alaşımların Tek Kristal Formda Üretimi, Karakterizasyonu ve Mühendislik Uygulamaları. Doktora, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, 2017.
  • [3] Stewart, GR. Superconductivity in iron compounds. Rev. Mod. Phys, 2011; 83, 1589.
  • [4] Shimizu, K., Kimura, T., Furomoto, S., Takeda, K., Kontani, K., Onuki, Y., Amaya, K. Superconductivity in the Non- Magnetic State of Iron Under Pressure. Nature, 2001; 412, 316.
  • [5] McQueen TM, Huang Q, Ksenofontov V, vd. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B. 2009; 79, 014522.
  • [6] Medvedev S, McQueen TM, Troyan I., vd., Electronic and Magnetic Phase Diagram of beta-Fe(1.01)Se With Superconductivity at 36.7 K Under Pressure. Nat. Mater. 2009; 8, 630.
  • [7] Margadonna S, Takabayashi Y, Ohishi Y, vd. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37 K). Phys. Rev. B. 2009; 80, 064506.
  • [8] Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y. Superconductivity at 27K27K in tetragonal FeSe under high pressure. Appl. Phys. Lett. 2008; 93, 152505.
  • [9] Wu MK, Hsu FC, Yeh KW, Huang TW, vd. The development of the superconducting PbO-type β-FeSe and related compounds. Physica C. 2009; 469, 340.
  • [10] Mizuguchi Y, Tomioka F, Tsuda S, vd. Substitution Effects on FeSe Superconductor J. Phys. Soc. Jpn. 2009; 78, 074712.
  • [11] Fang MH, Pham HM, Qian B, vd. Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82. Phys. Rev. B. 2008; 78, 224503.
  • [12] Yeh KW, Huang TW, Huang Y, vd. Tellurium substitution effect on superconductivity of the α-phase iron selenide. Europhys. Lett. 2008;84, 37002.
  • [13] Sales BC, Sefat AS, McGuire MA, vd. Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1−x. Phys. Rev. B. 2009; 79, 094521.
  • [14] Taen T, Tsuchiya Y, Nakajima Y, Tamegai T. Superconductivity at Tc∼14 K in single-crystalline FeTe0.61Se0.39. Phys. Rev. B. 2009; 80, 092502.
  • [15] Kumar S and Singh PP. Excess of manganese in an iron-based superconductor: a first-principles study of its electronic, magnetic and superconducting properties. Mater. Res. Express. 2016; 3, 056001.
  • [16] Ozabaci M, Yakinci K, Yakinci ME. Enhancement of Magnetic and Transport Properties of Superconducting $Fe_{1−x}MnxSe_{0.5}Te{0.5}$ Single Crystals. JOM. 2019;71,3285–3292.
  • [17] Yakinci K, Ozabaci M, Depci T, Yakinci ME. Degradation of Superconducting Properties by Cu Adding on FeTe0.5se0.5 System. Internatıonal Conference on Condensed Matter and Materıals Scıence; 2017; 11-15 October; Adana/ Turkey.112.
  • [18] Chen N, Liu Y, Ma Z, Li H. Significant enhancement of superconducting properties in the FeSe0.5Te0.5 bulks by minör Sn addition. Materials Letters. 2016; 175,16–19.
  • [19] Deguchi K, Takano Y, Mizuguchi Y. Physics and chemistry of layered chalcogenide superconductors. Sci. Adv. Matter. 2012; 13, 054303 (11pp).
  • [20] Felner I, Nowik I, Tsindlekht MI, Ren Z, Shen X, Che G, Zhao Z, arXiv. 2008; 805, 2794.
  • [21] Nowik I, Jerusalem IFHU, Awana VPS, Vajpayee A, Kishan H. J. Phys. Condens. Matter. 2008; 20, 292201.
  • [22] Mukuda H, Terasaki N, Kinouchi H, Yashima M, Kitaoka Y, Suzuki S, Miyasaka S, Tajima S, Miyazawa K, Shirage P, Kito H, Eisaki H, Iyo A, Enhancement of Superconducting Transition Temperature Due to Antiferromagnetic Spin Fluctuations in Iron-pnictides LaFe(As1−xPx)(O1−yFy) : 31P-NMR Studies. J. Phys. Soc. Jpn. 2008; 77, 093704.
  • [23] Awana VPS, Pal A, Vajpayee A, Mudgel M, Kishan H, Husain M, Zeng R, Yu S, Guo YF, Shi YG, Yamaura K, Takayama- Muromachi E. Synthesis and physical properties of FeSe1/2Te1/2FeSe1/2Te1/2 superconductor. Appl. Phys. 2010; 107, 09-128.
  • [24] Onar K, Ozçelik B, Güler NK, Okazaki H, Takeya H, Takano Y, Yakinci ME, Enhanced physical properties of single crystal Fe0.99Te0.63Se0.37 prepared by self-flux synthesis method. Journal of Alloys and Compounds. 2016; 683, 164- 170.
  • [25] Maheshwari PK, Jha R, Gahtori B, and Awana VPS, Flux free growth of large FeSe1/ 2Te1/ 2 superconducting single crystals by an easy high temperature melt and slow cooling method. AIP ADVANCES. 2015; 5, 097112.
  • [26] Zhang S.B, Sun YP, Zhu XD, Zhu XB, Wang BS, Li G, Lei HC, Luo X, Yang ZR, Song WH and Dai JM. Crystal growth and superconductivity of FeSex. Supercond. Sci. Technol. 2009; 22,015020.
  • [27] Velasco Soto D, Rivera Gomez, FJ, Santillan Rodriguez CR, Saenz Hernandez RJ, Botello Zubiate, M.E., Matutes Aquinoa JA. Upper critical fields in a FeSe0.5Te0.5 superconducting single crystal. J. Appl. Phys. 2013; 113, 17-138.
  • [28] Ding QP, Mohan S, Tsuchiya Y, Taen T, Nakajima Y, Tamegai T. Low-temperature synthesis of FeTe0.5Se0.5 polycrystals with a high transport critical current density. Supercond. Sci. Technol. 2011; 24, 075025.
  • [29] Palstra TTM, Batlogg B, Schneemeyer LF, and Waszczak JV. Thermally Activated Dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ. Phys. Rev. Lett. 1988; 61, 1662.
  • [30] Blatter G, Feigelman MV, Geshkenbein VB, Larkin AI, and Vinokur VM. Vortices in high-temperature superconductors. Rev. Mod. Phys. 1994; 66, 1125.
  • [31] Jaroszynski J, Hunte F, Balicas L, Jo Y-J, Raicevic I, Gurevich A, Larbalestier DC, Balakirev FF, Fang L, Cheng P, Jia Y, and Wen HH. Upper critical fields and thermally-activated transport of NdFeAsO0.7F0.3 single crystal. Phys. Rev. B. 2008; 78, 174523.
  • [32] Shahbazi M, Wang XL, Shekhar C, Srivastava ON, and. Dou SX. Supercond. Upper critical field, critical current density and thermally activated flux flow in fluorine doped CeFeAsO superconductors. Sci. Technol. 2010; 23, 105008.
  • [33] Zhang YZ, Ren ZA, and Zhao Z X. Thermally activated energy and critical magnetic fields of SmFeAsO0.9F0.1. Supercond. Sci. Technol. 2009; 22, 065012.
Fırat Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1308-9072
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1987
  • Yayıncı: FIRAT ÜNİVERSİTESİ