ECG Sinyallerinde Gürültü Gidermek için Dalgacık Dönüşümünün FPGA Tabanlı Donanımsal Gerçeklemesi

Bu makalede, biyomedikal sinyal olan ECG sinyallerinde gürültü gidermek için dalgacık dönüşümü (DD)yöntemi ve donanımsal gerçeklemesi sunulmuştur. DDü ile gürültülü sinyal seviyelere ayrıştırılarak gürültülübileşenler eşikleme işlemine tabi tutulmuştur. Eşikleme yöntemlerinden biri olan yumuşak eşikleme kullanılarakgürültülü katsayılar sıfıra çekilmiştir. Eşikleme sonucunda elde kalan katsayılar tekrar birleştirilerek sinyalgürültüden arındırılmıştır. Gürültü giderim algoritmasının hem donanımsal hem de yazılımsal olarak kolay veesnek bir şekilde tasarlanıp değiştirilebilme ve programlanabilme özelliğini taşıması için FPGA (FieldProgrammable Gate Array Alan Programlanabilir Kapı Dizileri) tercih edilmiştir. Bu çalışmada, Xilinx serisiFPGA platformu kullanılmıştır.

FPGA Implementation of Wavelet Transform for Denoising ECG Signals

In this paper, wavelet transform (WT) method and hardware implementation are presented to resolve the noise inthe ECG signals, which is biomedical signals. The noisy signal is seperated with DD, the noisy components aresubjected to the thresholding process. The noisy coefficients are set to zero by using soft thresholding, which is athresholding techniques. The signal is eliminated from the noise by recombining the rest of coefficient obtainedfrom the thresholding. The FPGA (Field Programmable Gate Array) is preferred to have changeable andprogrammable features and to characterize the noise removal algorithm with both easy and flexible hardware andsoftware designed. In this study, the Xilinx FPGAs series platform is used.

___

  • 1. Borries, R.V., Pierluissi, J. H., and Nazeran, H. (2009). Redundant Discrete Wavelet Transform for ECG Signal Processing, Biomedical Sof t Computing and Human Sciences, Vol.14,No.2,pp.69-80. 2. Wu, Y., Rangayyan, R.M., Zhou, Y., and Ng, S.C. (2009). Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system, Medical Engineering & Physics, vol.31, no.1, pp.17-26. 3. Sayadi, O., Shamsollahi, M.B. (2008). ECG denoising and compression using a modified extended kalman filter structure, IEEE Trans. on Biomedical Engineering, vol.55, no.9, pp. 2240-2248. 4. Sivannarayayana, N., Reddy, D.C. (1999). Biorthogonal wavelet transforms for ECG parameters estimation, Medical Engineering and Physics, vol.21, pp.167-174. 5. Bahoura, M., Ezzaidi, H. (2010). FPGA- Implementation of Wavelet-based Denoising Technique to Remove Power-Line Interference from ECG Signal, IEEE, 978-1-4244-6561-3/10. 6. Zhidong, Z., Min, P. (2007). ECG denoising by sparse wavelet shrinkage, in Bioinf ormatics and Biomedical Engineering, pp.786-789. 7. Alfaouri, M., Daqrouq, K. (2008). ECG denoising by sparse wavelet shrinkage, American Journal of Applied Sciences, vol.5(3), pp.276-281. 8. Sayadi, O., Shamsollahi, M.B. (2006). ECG denoising with adaptive bionic wavelet transform, in 28th Annual International Conf . of IEEE on Eng. In Med. and Biology Society EMBS ’06, pp.6597-6600. 9. Donoho, D.L. (1993). Nonlinear wavelet methods for recovering signals, images, and densities from indirect and noisy data, Proceedings of Symposia in Applied Mathematics, vol.47, pp. 173-205. 10. Su, L., Zhao, G. (2005). De-noising of ECG signal using translation-invariant wavelet de- noising method with improved thresholding, in Engineering in Medicine and Biology Society, IEEE-EMBS. 11. Strang, G., Nguyen, T. (1996). Wavelets and Filter Banks, Cambridge Press, Wellesley, 390s. 12. Uyar, M., Yıldırım, S., Gençoğlu M.T. (2011). Güç kalitesindeki bozulma türlerinin sınıflandırılması için bir örüntü tanıma yaklaşımı, Gazi Üniversitesi Müh.-Mim. Fak. Dergisi, 26, 1, 41-56. 13. Goswami J, C., Chan A. K. (1999). Fundamentals of Wavelets Theory, Algorithm and Applications, John Wiley & Sons, USA. 14. Vetterli, M., Herley, C. (1992). Wavelets and Fitler Banks: Theory and Design, IEEE Transactions on Signal Processing, Vol. 40, No. 9. 15. Uyar, M., Yıldırım, S., Gençoğlu, M.T. (2013). Güç kalitesi problemlerinin analizi için işaret işleme yöntemlerinin karşılaştırılması, Fırat Üniversitesi Müh. Bil. Dergisi, 25 (1), 21-31. 16. Fliege, N.J. (1996). Multirate digital signal processing, John Wiley & Sons, Chichester, 251p. 17. Bilgin, S. (2008). Kalp Hızı Değişkenliğinin Dalgacık Dönüşümü ve Yapay Sinir Ağları Kullanılarak Analizi, Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü. 18. Üstündağ, M., Gökbulut, M., Şengür, A., Ata, F. (2012). Denoising of weak ECG signals by using wavelet analysis and fuzzy thresholding, Network Modelling Analysis in Health Inf ormatics and Bioinf ormatics, pp.135-140. 19. Fletcher, A.K. (2002). Denoising via Recursive Wavelet Thresholding, Master of Science in Electrical Engineering in the Graduate Division of the University of California, Berkele. 20. Kumar, P.S., Arumuganathan, R., Sivakumar, K., Vimal, C. (2008). Removal of Ocular artifacts in the EEG through Wavelet Transform without using an EOG Reference Channel, Int.J.Open Problems Compt. Math., vol.1, no.3, pp.188-200. 21. Bartušek, K., Přinosil, J., Smékal, Z. (2011). Wavelet-based de-noising techniques in MRI, Computer Methods and Programs in Biomedicine, vol. 104, Issue 3, Pages 480-488. 22. Zhang, Q., Rossel, R.A., Choi, P. (2006). Denoising of gamma-ray signals by interval- dependent thresholds of wavelet analysis, Measurement Science and Technology, pp.731- 735. 23. Internet: Harvard-MIT Division of Health Sciences and Technology, http://ecg.mit.edu/.