Vitiligolu Hastalarda Serum ADMA, MDA, Vitamin E ve Homosistein Düzeyleri

Amaç: Vitiligo, melanosit yıkımı ileseyreden kazanılmış bir depigmentasyon hastalığıdır. Vitiligonun gerçek etyopatogenezisi ve mekanizması tam olarak anlaşılamamıştır. Çeşitli gruplar, vitiligo patofizyolojisinde oksidatif stres katılımını göstermiştir. Bu çalışmanın amacı vitiligonun serum homosistein, asimetrik dimetilarginin (ADMA), vitamin A, vitamin E ve malondialdehit (MDA) düzeyleri ile ilişkisini araştırmaktır. Gereç ve Yöntem: Bu randomize vaka kontrol çalışması 30 vitiligo hastası ve 20 sağlıklı kontrol olmak üzere 50 birey üzerinde gerçekleştirilmiştir. Her bireyden serum kan örnekleri vitamin A, vitamin E, MDA, ADMA ve homosistein düzeylerini belirlemek üzere toplanmıştır. Bu parametrelerin düzeyleri her iki grupta da High Performance Liquid Chromatography-Yüksek Performanslı Sıvı Kromatografi (HPLC) cihazı kullanarak çalışılmıştır. Bulgular: Serum vitamin E düzeyleri vitiligolu hastalarda istatistiksel olarak anlamlı düşük iken (p=0.004), serum MDA, homosistein ve ADMA düzeyleri anlamlı olarak artmıştı (p0.05). Sonuç: Biz vitamin E düzeylerinin azalmasının ve homosistein, MDA ve ADMA düzeylerinin artmasının vitiligoda belirgin bir özellik teşkil ettiği sonucuna vardık.

Serum ADMA, MDA, Vitamin E and Homocysteine Levels in Vitiligo Patients

Objective: Vitiligo is an acquired depigmenting disorder caused by the destruction of melanocytes. The exact etiopathogenesis and mechanisms of vitiligo are not fully understood. Several groups have shown the involvement of oxidative stress in the pathophysiology of vitiligo. The aim of this study was to study for any association of vitiligo with serum homocysteine, asymmetric dimethylarginine (ADMA), vitamin A, vitamin E and malondialdehyde levels (MDA). Material and Method: This randomized case control study was performed on 50 subjects: 30 patients suffering from vitiligo and 20 healthy controls. Venous blood was collected from each subject to estimate the levels of vitamin A, E, MDA, ADMA and homocysteine. The serum levels of these parameters in both groups were measured using High Performance Liquid Chromatography (HPLC).Results: The levels of serum vitamin E were significantly decreased in vitiligo patients (p=0.004), while serum MDA, homocysteine and ADMA levels were significantly increased (p<0.0001), and the levels of vitamin A were almost the same in patients as in the control subjects (p>0.05). Conclusion: According to our results, we conclude that reduced vitamin E levels and increased levels of homocysteine, MDA and ADMA may constitute a distinctive feature in vitiligo.

___

  • 1. Mosher DB. Hypomelanoses and hypermelanoses. In:Freedberg IM, Eisen AZ, WolV K, Austen KF, Goldsmith LA, Katz SI et al (eds) Fitzpatrick's dermatology in general medicine. McGraw-Hill, New York, 1999; 945-1018.
  • 2. Schallreuter KU, Wood JM, Berger J. Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 1991; 97: 1081-1085.
  • 3. Knight JA. Diseases related to oxygen-derived free radicals. Ann Clin Lab 1995; 25: 111-121.
  • 4. Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000; 20: 2032-2037.
  • 5. Gong L, Pitari GM, Schulz A, Waldman SA. Nitricoxide signaling: systems integration of oxygen balancein defense of cell integrity. Curr Opin Hematol 2004; 11: 7-14.
  • 6. Monteiro HP, Silva EF, Stern A. Nitric oxide: apotential inducer of adhesion-related apoptosis-anoikis.Nitric Oxide 2004; 10: 1-10.
  • 7. Brune B, von Knethen A, Sandau KB. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ 1999; 6: 969-975.
  • 8. Liu L, Stamler JS. NO: an inhibitor of cell death. Cell Death Differ 1999: 6: 937-942.
  • 9. van den Wijngaard RM, Wankowicz-Kalinska A, Pals S, Weening J, Das PK. Autoimmune melanocytedestruction in vitiligo. Lab Invest 2001; 81: 1061-1067.
  • 10. Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ et al. Immunopolarization of CD4+ and CD8+ T cells to type-1- like is associated withmelanocyte loss in human vitiligo. Lab Invest 2003; 83: 683-695.
  • 11. Das PK, van den Wijngaard RM, Wankowicz- Kalinska A, Le Poole IC. A symbiotic concept of autoimmunity and tumour immunity: lessons from vitiligo. Trends Immunol 2001; 22: 130-136.
  • 12. Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 1996; 148: 1219-1228.
  • 13. Iuga AO, Qureshi AA, Lerner EA. Nitric oxide is toxic to melanocytes in vitro. Pigment Cell Res 2004; 17: 302-306.
  • 14. Lentz SR, Rodionow RN, Dayol S. Hyperhomocysteinemia, endothelial dysfunction and cardiovascular risk: the potential role of ADMA. Atherosclerosis Suppl 2003; 4: 61-65.
  • 15. Boger RH. Association of asymmetric dimethylarginine and endothelial dysfunction Clin Chem Lab Med 2003; 41: 1467-72.
  • 16. Silverberg JI, Silverberg NB. Serum homocysteine as a biomarker of vitiligo vulgaris severity: A pilot study. J Am Acad Dermatol 2011; 64: 445-447.
  • 17. Hann SK. Autocytotoxic hypothesis for the destruction of melanocytes as the cause of vitiligo. In: Hann SK, Nordlund JJ (eds) Blackwell, Oxford: 2000: 137-41.
  • 18. Miyachi Y. Biochemistry of the physiopathologic and clinical aspects of free radicals in skin diseases. Nippon Rinsho1988; 46: 2252-6.
  • 19. Parola M, Bellomo G, Robino G, Barrera G, Dianzani MU. 4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications. Antioxid Redox Signal 1999; 1: 255-284.
  • 20. Felsten LM, Alikhan A, Petronic-Rosic V. Vitiligo: a comprehensive overview Part II: treatment options and approach to treatment. J Am Acad Dermatol 2011; 65: 493- 514.
  • 21. Akyol M, Celik VK, Ozcelik S, Polat M, Marufihah M, Atalay A. The effects of vitamin E on the skin lipid peroxidation and the clinical improvement in vitiligo patients treated with PUVA. Eur J Dermatol 2002; 12: 24-6.
  • 22. Khan R, Satyam A, Gupta S, Sharma VK, Sharma A. Circulatory levels of antioxidants and lipid peroxidation in Indian patients with generalized and localized vitiligo. Arch Dermatol Res 2009; 301: 731-7.
  • 23. Dell'anna ML, Urbanelli S, Mastro francesco A, et al. Alterations of mitochondria in peripheral blood mononuclear cells of vitiligo patients. Pigment Cell Res 2003; 16: 553-9.
  • 24. Dell'anna ML, Maresca V, Briganti S, et al. Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J Invest Dermatol 2001; 117: 908-13.
  • 25. Yildirim M, Baysal V, Inaloz HS, et al. The role of oxidants and antioxidants in generalized vitiligo. J Dermatol 2003; 30: 104-108.
  • 26. Koca R, Armutcu F, Altinyazar HC, Gurel A. Oxidantantioxidant enzymes and lipid peroxidation in generalized vitiligo. Clin Exp Dermatol 2004; 29: 406-409.
  • 27. Jimbow K, Chen H, Park S, Thomas PD. Increased sensitivity of melanocytesto oxidative stress and abnormal expression of trosinase-related protein in vitiligo. Br J Dermatol 2001; 44: 55-65.
  • 28. Agrawal D, Shajil EM, Marfatia YS, Begum R. Study on the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res 2004; 17: 289-94.
  • 29. Picardo M, Passi S, Morrone A, et al. Antioxidant status in the blood of patients with active vitiligo. Pigment Cell Res 1994; 7: 110-5.
  • 30. Riley PA. Radicals in melanin biochemistry. Ann NY Acad Sci 1988; 55: 111-20.
  • 31. Procter PH, Reynolds ES. Free radicals and disease in man. Physiol Chem Physics Med NMR 1984; 16: 175-95.
  • 32. Tastan HB, Erol IE, Sayal A, Erbil AH. Vitiligoda eser element ve antioksidan düzeyleri. T Klin J Dermatol 2003; 13: 141-9.
  • 33. Shaker OG, El-Tahlawi SM. Is there a relationship between homocysteine and vitili go? A pilot study.
  • 34. Montes LF, Dias ML, Lajous J, Garcia NJ. Folic acid and vitamin B12 in vitiligo: A nutritional approach. Cutis 1992; 50: 39-42.
  • 35. Kim SM. Serum levels of folic acid and vitamin B12 in Korean patients with vitiligo. Yonsei Med J 1999; 40: 195-198.
  • 36. El-Batawi MMY, El-Tawil NEA, El-Tawil AEA. Serum levels of vitamin B12 and folic acid in Egyptian patients with vitiligo. Egypt J Derm Androl 2001; 21: 77-80.
  • 37. Balci DD, Yonden Z, Yenin JZ, Okumus N. Serum homocysteine, folic acid and vitamin B12 levels in vitiligo. Eur J Dermatol 2009; 19: 382-3.
  • 38. Yasar A, Gunduz K, Onur E, Calkan M. Serum homocysteine, vitamin B12, folic acid levels and methylenetetrahydrofolate reductase (MTHFR) gene polymorphism in vitiligo. Dis Markers 2012; 33: 85-9.
  • 39. Reish O, Townsend D, Berry SA et al. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthased eficiency.Am J Hum Genet 1995; 57: 127-32.
  • 40. Ortonne JP. Vitiligo and other disorders of hypopigmentation. In: Dermatology, 1st edn (Bolognia JL, Jorizzo JL, RapiniRP, eds). New York: Mosby, 2003; 947-73.
  • 41. Derviş E. Oral antioksidanlar. Dermatoz 2011; 2: 263-7.
  • 42. Jain D, Misra R, Kumar A, Jaiswal G. Levels of malondial dehyde and antioxidants in the blood of patients with vitiligo of age group 11-20 years. Indian J Physiol Pharmacol 2008; 52: 297-301.
  • 43. Agrawal S. Comparison of oxidant-antioxidant status in patients with vitiligo and healthy population. KUMJ 2014; 12: 132-136.
  • 44. Ines D, Sonia B, Riadh BM, et al. A comparative study of oxidant-antioxidant status in stable and active vitiligo patients. Arch Dermatol Res 2006; 298: 147-152.
  • 45. Dell'Anna ML, Ottaviani M, Bellei B, et al. Membrane lipid defects are responsible for the generation of reactive oxygen species in peripheral blood mononuclear cells from vitiligo patients. J Cell Physiol 2010; 223: 187-193.
  • 46. Karadag AS, Tutal E, Ertugrul DT. Insulin resistance is increased in patients with vitiligo. Acta Derm Venereol 2011; 91: 541-544.