Serebral Gliomaların Derecelendirilmesinde; MR Spektroskopi ve Perfüzyon MR Görüntüleme Bulguları ile Histopatolojik Bulguların Karşılaştırılması

Amaç: Serebral glial tümörlerin preoperatif derecelendirilmesinde noninvaziv bir yaklaşım olan MR spektroskopi ve perfüzyon MR görüntüleme tekniklerinin yararını araştırmaktır. Gereç ve Yöntem: Operasyon ya da stereotaktik biyopsi ile glial tümör tanısı alan 20 hasta (4 düşük derece, 16 yüksek derece) çalışmaya dahil edildi. Tüm hastalar girişimsel işlem öncesinde konvansiyonel MR, MR spektroskopi ve perfüzyon MR görüntüleme ile değerlendirildi. Konvansiyonel MRG’de kitle etkisi, ödem, kanama, nekroz, kistik alan ve kontrast tutulumu değerlendirildi. MR spektroskopide Cho, NAA, Cr, Cho/Cr, Cho/NAA ve LL metabolitleri değerlendirildi ve DSC MR perfüzyon tekniği ile de rCBV, rCBF ve MTT değerleri hesaplandı. Glial tümörler radyolojik olarak derecelendirildi ve histopatolojik sonuçlar ile karşılaştırıldı. Bulgular: Düşük ve yüksek evre glial tümörler arasında yapılan değerlendirmede; MR spektroskopide TmLL değerleri istatistiksel olarak anlamlı farklılık göstermekteydi. Perfüzyon MR incelemesinde ise rCBV ve rCBF değerleri arasında istatistiksel olarak anlamlı farklılık saptandı, ancak MTT değerleri arasında anlamlı farklılık saptanmadı. Sonuç: MR spektroskopi ve Perfüzyon MRG; glial tümörlerin derecelendirilmesinde faydalı fonksiyonel MRG yöntemleri olup, konvansiyonel MRG’ ye göre daha fazla bilgi sağlamaktadır. rCBV ölçümleri derecelemeyi değerlendirmede en iyi parametredir. LL ve rCBV’nin konvansiyonel MRG ile kombinasyonu glial tümörleri derecelendirmede en doğru sonucu verecektir.

Grading of Cerebral Gliomas: Comparison of MR Spectroscopy and Perfusion MR Findings with Histopathological Findings

Objective: To investigate the utility of MR spectroscopy and perfusion MR imaging techniques, which is a noninvasive approach in the preoperative grading of cerebral glial tumors. Material and Method: Twenty patients who were diagnosed with glial tumor by means of operation or stereotactic biopsy (4 low grade, 16 high grade) were included in this study. All the patients were evaluated by means of conventional MR, MR spectroscopy and perfusion MR imaging before the interventional procedure. The effect of the mass, edema, bleeding, necrosis, cystic area and contrast enhancement were evaluated by conventional MR. Metabolites of Cho, NAA, Cr, Cho / Cr, Cho / NAA and LL were evaluated in MR spectroscopy and rCBV, rCBF and MTT values were calculated with DSC MR perfusion technique. Glial tumors were graded radiologically and compared with the histopathological results. Results: At the end of the evaluation between low and high grade glial tumors, TmLL values showed statistically significant difference in MR spectroscopy. In perfusion MRI, a statistically meaningful difference was observed between rCBV and rCBF values, but no meaningful difference was observed between MTT values. Conclusion: MR spectroscopy and perfusion MRI are useful functional MRI methods in the grading of glial tumors, and they provide more information in comparison to conventional MRI. rCBV measurement is the best parameter for the evaluation of grading. The combination of LL and rCBV with conventional MRI will give the most accurate result in glial tumors grading.

___

  • 1. Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics 2006; 26: 173-89. 2. Brunetti A, Alfano B, Soricelli A et al. Functional characterization of brain tumors: an overview of the potential clinical value. Nucl Med Biol 1996; 23: 699-715. 3. Louis DN, Perry A, Reifenberger G et al. The 2016 WHO classification of tumours of the central nervous system: a summary. Acta Neuropathol 2016; 131: 803-20. 4. Bangiyev L, Rossi Espagnet MC, Young R et al. Adult brain tumor imaging: state of the art. Semin Roentgenol 2014; 49: 39-52. 5. Lee YY, Van Tassel P. Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. AJR Am J Roentgenol 1989; 152: 361-9. 6. Rees JH, Smirniotopoulos JG, Jones RV, Wong K. Glioblastoma multiforme: radiologic-pathologic correlation. Radiographics 1996; 6: 1413-38. 7. Yazol M, Öner AY. Türk Radyoloji Seminerleri: Beyin Gliomlarında Magnetik Rezonans Görüntüleme. Trd Sem 2016; 4: 20-36. 8. Law M, Yang S, Wang H et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 2003; 24: 1989-98. 9. Covarrubias DJ, Rosen BR, Lev MH et al. Dynamic magnetic resonance perfusion imaging of brain tumors. The Oncologist 2004; 9: 528-37. 10. Zonari P, Baraldi P, Crisi G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 2007; 49: 795-803. 11. Aksoy FG, Yerli H. Dinamik kontrastlı beyin perfüzyon görüntüleme: teknik prensipler, tuzak ve sorunlar. Tanısal ve Girişimsel Radyoloji 2003; 9: 309-14. 12. Yang D, Korogi Y, Sugahara et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 2002; 44: 656-66. 13. Spampinato MW, Smith JK, Kwock L et al. Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. AJR Am J Roentgenol 2007; 188: 204-12. 14. Batra A, Tripathi RP, Singh AK. Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging. Australas Radiol 2004; 48: 324-32. 15. Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 2006; 58: 394-403. 16. Li C, Ai B, Li Y, Qi H, Wu L. Susceptibilityweighted imaging in grading brain astrocytomas. Eur J Radiol 2010; 75: e81-5. 17. Pinker K, Noebauer-Huhmann IM, Stavrou I et al. High-resolution contrastenhanced, susceptibilityweighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 2007; 28: 1280-6. 18. Senturk S, Oguz K, Cila A. Dynamic contrastenhanced susceptibility-weighted perfusion imaging of intracranial tumors: a study using a 3T MR scanner. Diagn Interv Radiol 2009; 15: 3-12. 19. Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, Atahan S. High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol 2005; 60: 493-502. 20. Poptani H, Grupta RK, Roy R et al. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuradiol 1995; 16: 1593-603. 21. Möller-Hartmann W, Herminghaus S, Krings T et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2002: 44: 371-81. 22. Butzen J, Prost R, Chetty V et al. Discrimination between neoplastic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model. AJNR Am J Neuroradiol 2000; 21: 1213-9. 23. Castillo M, Kwock L. Clinical applications of proton magnetic resonance spectroscopy in the evaluation of common intracranial tumors. Top Magn Reson Imaging 1999; 10: 104-13. 24. Kimura T, Sako K, Gotoh T et al. In vivo singlevoxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR Biomed 2001; 14: 339-49. 25. Castillo M, Kwock L. Proton MR spectroscopy of common brain tumors. Neuroimaging Clin North Am 1998; 8: 733-52. 26. Warren KE, Frank JA, Black JL et al. Proton magnetic resonance spectroscopic imaging in children recurrent primary brain tumors. J Clin Oncol 2000; 18: 1020-6. 27. Shoaib Y, Nayil K, Makhdoomi R et al. Role of diffusion and perfusion MRI in predicting the histopathological grade of gliomas. Asian J Neurosurg 2019; 14: 47-51. 28. Luyten PR, Marien AJ, Heindel W et al. WD. Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. Radiology 1990; 176: 791-9. 29. Usenius JP, Kauppinen RA, Vainio PA et al. Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomogr 1994; 18: 705-13. 30. Lee SJ, Kim JH, Kim YM et al. Perfusion MR imaging in gliomas: comparison with histologic tumour grade. Korean J Radiol 2001; 2: 1-7. 31. Knopp E, Cha S, Johnson G et al. Glial neoplasms: dynamic contrast-enhanced T2- weighted MR imaging. Radiology 1999; 211: 791-8. 32. Aronen HJ, Gazit IE, Louis DN et al. Cerebral blood volume maps of gliomas. Comparison with tumour grade and histological findings. Radiology 1994;191: 41-51. 33. Shin JH, Lee HK, Kwun BD et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 2002; 179: 783-9. 34. Al-Okaili RN, Krejza J, Woo JH et al. Intraaxial brain masses: MR imaging based diagnostic strategy--initial experience. Radiology 2007; 243: 539-50. 35. Emblem KE, Nedregaard B, Nome T et al. Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 2008; 247: 808-17. 36. Law M, Yang S, Babb JS et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 2004; 25: 746-55. 37. Bisdas S, Kirkpatrick M, Giglio P et al. Cerebral blood volume measurements by perfusion weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? Am J Neuroradiol 2009; 30: 681-8. 38. Henry RG, Vigneron DB, Fischbein NJ et al. Comparison of Relative Cerebral Blood Volume and Proton Spectroscopy in Patients with Treated Gliomas. Am J Neuroradiol 2000; 21: 357-66. 39. Sugahara T, Korogi Y, Tomiguchi S et al. Posttherapeutic intraaxial brain tumor: The value of perfusion-sensitive contrast enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 2000; 21: 901-9. 40. Hu LS, Baxter LC, Smith KA et al. Relative cerebral blood volume values to differentiate high grade glioma recurrence from posttreatment radiation effect: Direct correlation between image guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. Am J Neuroradiol 2009; 30: 552-8.
Fırat Tıp Dergisi-Cover
  • ISSN: 1300-9818
  • Başlangıç: 2015
  • Yayıncı: Fırat Üniversitesi Tıp Fakültesi
Sayıdaki Diğer Makaleler

Anevrizmal Kemik Kistine Bağlı Femur Boyun Kırığı; Pediatrik Olgu Sunumu

Burak KUŞCU, Duran TOPAK

Kronik Sitomegalovirüs Enfeksiyonu ve İnme

Özlem BİZPINAR MUNİS, Bülent GÜVEN

Akut Pankreatitte Prognoz Belirteci Olarak Prokalsitonin

İhsan SOLMAZ, Ömer Faruk ALAKUŞ, Nazim EKIN, Songul ARAC, Burhan Sami KALIN

Serebral Gliomaların Derecelendirilmesinde; MR Spektroskopi ve Perfüzyon MR Görüntüleme Bulguları ile Histopatolojik Bulguların Karşılaştırılması

Yeliz GÜL, Hanefi YILDIRIM

Mastit ve Meme Absesi Tanılı Yenidoğan Vakalarımızın Değerlendirilmesi

İlknur SÜRÜCÜ KARA, Necla AYDIN PEKER

Lokalize Prostat Kanserinde Radikal Prostatektomi Sonrası Biyokimyasal Nükse Etki Eden Faktörlerin Değerlendirilmesi*

Cavit CEYLAN, Samet ŞENEL, İbrahim KELEŞ

Postpartum Kanamalı Hastalarda Uygulanan Cerrahi Tekniklerin Retrospektif Analizi

Adeviye ELÇİ ATILGAN, Ali ACAR, Fatma KILIÇ

Obstrüktif ve Non-obstrüktif Azospermik Türk Erkeklerin Genetik Sonuçlarının Değerlendirilmesi: Multisentrik Retrospektif Çalışma

Ahmet SALVACI, Ali Sami GURBUZ, İsmet Bilger ERİHAN, Mehmet Ali KARAGÖZ, Mehmet USLU, Murat BAĞCIOĞLU, Mehmet BALASAR, Recai GÜRBÜZ

Nonalkolik Steatohepatitli Ratlarda N-Asetilsistein, Rosiglitazon ve Etodolak’ın Tedavi Edici Etkilerinin Değerlendirilmesi

Sedat YILMAZ

Yorgun Mermiye Bağlı Gelişen Ölüm Olgusu

Abdullah AVŞAR, Tuba AKKUŞ ÇETİNKAYA, Yusuf Emre SARAÇ, Süleyman SİVRİ