Obezite ve Gastrointestinal Sistem İlişkisi

ÖZET Obezite epidemisi, hızla dünya çapında mortalite ve morbiditenin önde gelen nedenlerinden biri haline gelmektedir. Son 30 yılda, gastrointestinal hormonların, obez bireylerde iştah ve enerji dengesinin düzenleyicileri olarak önemli bir rol oynadığı giderek daha fazla anlaşılmıştır. İntestinal mikrobiyota da obezite, obezite ile ilişkili inflamasyon ve metabolik sendrom gelişiminde önemli bir rol oynar. Bu derlemede, enterik hormonların ve intestinal mikrobiyotanın, yeme davranışı, enerji tüketimi ve metabolizma gibi obeziteyi ortaya çıkaran patofizyolojik mekanizmalar üzerindeki etkileri tartışılmaktadır.

Relation between Obesity and the Gastrointestinal System

The obesity epidemic is rapidly becoming one of the leading causes of mortality and morbidity worldwide. Over the past 30 years, gastrointestinal hormones have been increasingly understood to have an important role as regulators of appetite and energy balance in obese individuals. Intestinal microbiota also plays a significant role in the development of obesity, obesity-associated inflammation and metabolic syndrome. In this review we discuss the effects of enteric hormones and intestinal microbiota on the pathophysiological mechanisms revealing obesity, including ingestive beha-vior, energy expenditure and metabolism.

___

  • WHO. WHO: obesity and overweight. 2017. http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 03.05.2018.
  • Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis 2014; 5: 4-14.
  • Kopelman P. Health risks associated with overweight and obesity. Obes Rev 2007; 8: 13-7.
  • Munzberg H, Qualls-Creekmore E, Yu S et al. Hedonics act in unison with the homeostatic system to unconsciously control body weight. Front Nutr 2016; 3: 6.
  • Heisler LK, Lam DD. An appetite for life: brain regulation of hunger and satiety. Curr Opin Pharmacol 2017; 37: 100-6.
  • Merlino DJ, Blomain ES, Aing AS, et al. Gut-brain endocrine axes in weight regulation and obesity pharmacotherapy. J Clin Med 2014; 3: 763-94.
  • Sharkey KA. Targeting the gut to treat obesity and its metabolic consequences: view from the Chair. Int J Obes Suppl 2016; 6: 3-5.
  • Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci 2016; 73: 737-55.
  • Westfall S, Lomis N, Kahouli I, et al. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017; 74: 3769-87.
  • Clemmensen C, Muller TD, Woods SC, et al. Gut-brain cross-talk in metabolic control. Cell 2017; 168: 758-74.
  • Gribble FM, Reimann F. Signalling in the gut endocrine axis. Physiol Behav 2017; 176: 183-8.
  • Buhmann H, le Roux CW, Bueter M. The gut-brain axis in obesity. Best Pract Res Clin Gastroenterol 2014; 28: 559-71.
  • Lean ME, Malkova D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int J Obes 2016; 40: 622-32.
  • Huda MS, Wilding JP, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev 2006; 7: 163-82.
  • Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656-60.
  • Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002; 346: 1623-30.
  • Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes 2013; 37: 625-33.
  • Adamska E, Ostrowska L, Gorska M, et al. The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Prz Gastroenterol 2014; 9: 69-76.
  • Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-57.
  • Field BC. Neuroendocrinology of obesity. Br Med Bull 2014; 109: 73-82.
  • Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46: 261-74.
  • Neary MT, Batterham RL. Peptide YY: food for thought. Physiol Behav 2009; 97: 616-9.
  • Vincent RP, Ashrafian H, le Roux CW. Mechanisms of disease: the role of gastrointestinal hormones in appetite and obesity. Nat Clin Pract Gastroenterol Hepatol 2008; 5: 268-77.
  • Chaudhri O, Small C, Bloom S. Gastrointestinal hormones regulating appetite. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1187-209.
  • Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes 2006; 30: 1729-36.
  • Batterham RL, Le Roux CW, Cohen MA, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 2003; 88: 3989-92.
  • Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1219-35.
  • Edelman S, Garg S, Frias J, et al. A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care 2006; 29: 2189-95.
  • Donate-Correa J, Martin-Nunez E, Delgado NP, et al. Implications of Fibroblast growth factor/Klotho system in glucose metabolism and diabetes. Cytokine Growth Factor Rev 2016; 28: 71-7.
  • Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 2013; 34: 39-58.
  • Duca FA, Lam TK. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab 2014; 16 Suppl 1: 68-76.
  • Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab 2016; 5: 743-52.
  • Blaut M. Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 2015; 74: 227-34.
  • Kobyliak N, Virchenko O, Falalyeyeva T. Pathophysiological role of host microbiota in the development of obesity. Nutr J 2016; 15: 43.
  • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-72.
  • Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3: 559-72.
  • Amar J, Serino M, Lange C, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 2011; 54: 3055-61.
  • Aronsson L, Huang Y, Parini P, et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 2010; 5: e13087.