FARKLI IŞIK CİHAZLARININ HİBRİT VE NANOHİBRİT KOMPOZİT REZİNLERİN YÜZEY SERTLİĞİNE ETKİSİ

Bu çalışmanın amacı; bir hibrit ve birnanohibrit kompozit rezinin yüzey sertliği üzerinebiri halojen ışık cihazı diğeri LED ışık cihazı olmaküzere farklı ışık cihazlarıyla polimerizasyonun etkisini değerlendirmektir. Bu amaçla 2 mm kalınlığındaki pleksiglasskalıplar üzerinde 5 mm çapında 40 adet standartyuva hazırlandı. Yuvaların yarısına nanohibritkompozit rezin Grandio diğer yarısına hibrit kompozit rezin Charisma uygulandı. Bu şekilde kompozit rezinlerin herbiri için hazırlanan 20 adetörneğin yarısı halojen ışık cihazı ile 40 s, diğeryarısı LED ışık cihazı ile üreticilerin tavsiye ettiğisüre olan 10 s süreyle üst yüzeylerinden polimerizeedildi. Her bir kompozit rezin-ışık cihazı kombinasyonunda 10 adet örnek olacak şekildehazırlanan örnekler 4 gruba ayrıldı. Tüm örneklerkoyu renkli cam şiselere yerleştirildikten sonra 37°C de etüvde 1 hafta süre ile bekletildi. SonraBarcol yüzey sertlik ölçüm cihazıyla her bir örneğinüst yüzeyinin üç değişik noktasından yüzey sertlikölçümleri yapılarak ortalamaları hesaplandı.Sonuçlar Üç Yönlü Varyans Analizi ve DuncanÇoklu Karşılaştırma Yöntemi kullanılarak istatistiksel olarak değerlendirildi p

Effect of Different Curing Lights on Surface Hardness of Hybrid and Nanohybrid Composite Resins

The aim of this study was to evaluate the effectof halogen and LED light curing units on surfacehardness of a nanohybrid composite resin and ahybrid composite resin. 40 standard holes, each 2 mm thick and 5 mmin diameter were prepared on the top surfaces ofplexiglass molds. Half of the holes were filled witha nanohybrid composite resin Grandio and theothers were filled with a hybrid composite resin Charisma . 20 specimens were prepared for eachcomposite resin. Half of the composite specimenswere then polymerized 40 s from the top surfacesusing a halogen light curing unit and the otherswere polymerized using a LED light curing unit for10 s. The specimens were divided into four groupseach containing 10 composite specimens. All specimens were placed in dark colored glass containersand were stored at 37°C for one week. Surfacehardness measurements were made by using Barcolsurface hardness measuring device from three different points on the top surface of each specimenand the average values were calculated. The datawere subjected to statistical analysis using threeway ANOVA and Duncan’s Multiple Range test ata significance level of p

___

  • Yap AUJ, Teoh SH, Tan KB. Influence of water exposure on three-body wear of composite restoratives. J Biomed Mater Res (Appl. Biomater) 2000a; 53: 547-53.
  • Yap AUJ, Low JS, Ong LF. Effect of food- simulating liquids on the surface characteristics of composite and polyacid modified composite restora- tives. Oper Dent 2000b; 25: 170-76.
  • Yap AUJ, Lee MK, Chung SM, Tsai KT., Lim CT. Effect of food- simulating liquids on the shear punch strength of composite and polyacid modified composite restoratives. Oper Dent 2003a; 28: 529-34.
  • Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res (Appl. Biomater) 2000; 53: 353-61.
  • Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105: 97- 116.
  • Yap AUJ, Tan CH, Chung SM. Wear beha- vior of new composite restoratives. Oper Dent 2004a; 29: 269-74.
  • Yap AUJ, Lim LY, Yang TY, Ali A, Chung SM. Influence of dietary solvents on strength of nanofill and ormocer composites. Oper Dent 2005; 30: 129-33.
  • Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials.JADA 2003; 134: 1382-89.
  • Davis N. A nanotechnology composite. Compendium 2003;24: 662-67.
  • Duke ES. Has dentistry moved into the nanotechnology era? Compendium 2003; 24: 380- 82.
  • Sonugelen M, Artunç C, Güngör MA. Farklı yöntemlerle polimerize edilen estetik restoratif materyallerde aşınma ve sertliğin incelen- mesi. E Ü Diş Hek Fak Derg 2000; 21: 1-10.
  • Yap AUJ, Tan SHL, Wee SSC, Lee CW. Chemical degradation of dental composites. J Oral Rehabil 2001;28: 1015-21.
  • Pires JA, Cvitko E, Denehy GE, Swift EJ. Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int
  • O’Brien WJ. Dental materials and their selection. 2nd Ed. Chicago: Quintessence Pub Co, 1997; 18-114.
  • Micali B, Basting RT. Effectiveness of composite resin polymerization using light-emitting diodes (LEDs ) or halogen-based light-curing units. Braz Oral Res 2004; 18: 266-70.
  • Price RB, Felix CA, Andreou P. Evulation of second generation LED curing light. J Can Dent Assoc 2003; 69: 666-75.
  • Jandt KD, Mills RW, Blackwell GB, Ashworth SH. Depth of cure and compressive strength of dental composites cured with blue emitting diodes (LEDs). Dent Mater 2000; 16: 41-7.
  • Kurachi C, Tuboy A.M, Magalhaes DV, Bagnato VS. Hardness evulation of a dental compo- site polymerized with experimental LED-based devices. Dent Mater 2001; 17: 309-15.
  • Mills RW. Blue light emitting diodes- another method of light curing? Br Dent J 1995; 178: 169 (letter).
  • Miyazaki M, Hattorı T, Ichiishi Y, Kondo M, Onose H, Moore BK. Evaluation of curing lights used in private dental offices. Oper Dent 1998; 23: 50-4.
  • Pilo R, Oelgiesser D, Cardash HS. A survey output intensity and potential for depth of cure among light curing units in clinical use. J Dent 1999; 27: 235-41.
  • Mills RW, Jandt KD, Blackwell GB, Ashworth SH. Light emitting diode and halogen curing–composite depth of cure. J Dent Res 1999b; 78: 1053 (Abstract no: 147).
  • Dunn WJ, Bush AC. A comparison of poly- merization by light-emitting diode and halogen- based light-curing units. JADA. 2002; 133: 335-41.
  • Yoon TH, Lee YK, Lim BS, Kim CW. Degree of polymerization of resin composites by dif- ferent light sources. J Oral Rehabil 2002; 29: 1165- 73.
  • Dunn WJ, Taloumis LJ. Polymerization of orthodontic resin cement with light emitting diode curing units. Am J Orthod Dentofacial Orthop 2002; 122: 236-41.
  • Bala O, Üçtaşlı MB, Tüz MA. Barcol hard- ness of different resin based composites cured by halogen or light emitting diode (LED). Oper Dent 2005b; 30: 69-74.
  • Sturdevant CM, Roberson TM, Heymann HO, Sturdevant JR. The art and science of operative dentistry. 3rd Ed. St. Louis: Mosby-Year Book Inc, 1995;: 252-63.
  • Ferracane JL, Mitchem JC, Condon JR, Todd R. Wear and marginal breakdown of compo- sites with various degree of cure. J Dent Res 1997; 76: 1508-16.
  • Dietschi D, Marret N Krejci I. Comparative efficiency of plasma and halogen light sources on composite microhardness in different curing condi- tions. Dent Mater 2003; 19: 493-500.
  • Hussain LA, Dickens S.H, Bowen RL. Properties of eight metacrylatedbeta-cyclodextrin composite formulations. Dent Mater 2005; 21: 210- 16.
  • Miyazaki M, Onose H, Iida N, Kazama H. Determination of residual double bonds in resin- dentin interface by Raman spectroscopy. Dent Mater 2003; 19: 245-51.
  • Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M, Nahara Y. ESR study of cam- phorquinone/amine photoinitiator systems using blue emitting diodes (LEDs). Biomaterials 2003; 24: 2097-103.
  • Halvorson RH, Erickson RL, Davidson CL. Polymerization efficiency of curing lamps: a univer- sal energy conversion relationship predictive of con- version of resin based composite. Oper Dent 2004; 29: 105-11.
  • Bala O, Ölmez A, Kalaycı Ş. Effect of LED and halogen light curing on polymerization of resin based composites. J Oral Rehabil 2005a; 32: 134-40.
  • Gerzina TM, Hume WR. Effect of dentine on release of TEGDMA from resin composite in vitro. J Oral Rehabil 1994; 21: 463-68.
  • Rueggeberg FA, Craig RG. Correlation of parameters used to estimate monomer conversion in a light cured composite. J Dent Res 1988; 67: 932- 37.
  • Koupis NS, Vercruysse CWJ, Marks LAM, Martens LC, Verbeeck RMH. Curing depth of composite resins determined by scraping and a penetrometer. Dent Mater 2004; 20: 908-14.
  • Murray GA, Yates JL, Newman SM. Ultraviolet light and ultraviolet light activated com- posite resins. J Prosthet Dent 1981; 46: 167-170.
  • Cohen ME, Leonard DL, Charlton DG, Roberts HW, Ragain JC. Statistical estimation of resin composite polymerization sufficiency using microhardness Dent Mater 2004; 20: 158-66.
  • Yap AUJ. Effectiveness of polymerization in composite restoratives claiming bulk placement: impact of cavity depth and exposure time. Oper Dent
  • Hofmann N, Hugo B, Klaiber B. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise and hardness. Eur Oral Sci 2002; 110: 471-9.
  • Bouschlicher MR, Rueggeberg FA, Wilson BM. Correlation of bottom-to-top surface microhard- ness and conversion ratios for a variety of resin com- posite compositions. Oper Dent 2004; 29: 698-704.
  • Soh MS, Yap AUJ. Influence of curing modes on crosslink density in polymer structures. J Dent 2004; 32: 321-6.
  • Tsai PCL, Meyers IA, Walsh LJ. Depth of cure and surface microhardness of composite resin cured with blue LED curing lights. Dent Mater 2004; 20: 364-8.
  • Price RB, Felix CA, Andreou P. Effects of resin composite composition and irradiation distance on the performance of curing lights. Biomaterials 2004; 25: 4465-77.
  • Ulusoy N, Gökay O, Müjdeci A. Farklı kalınlıklarda uygulanan yeni geliştirilmiş üç kom- pozitin yüzey sertliği. A Ü Diş Hek Fak Derg 2000; 27: 29-35.
  • Abate PF, Zahra VN, Macchi RL. Effect of photopolymerization variables on composite hard- ness J Prosthet Dent 2001a; 86: 632-5.
  • Abate PF, Bertacchını SM, Garcıa-Godoy F, Macchi RL. Barcoll hardness of dental materials treated with an APF foam J Clin Pediatr Dent 2001b; 25: 143-6.
  • Kauppi MR, Combe ECC Polymerization of orthodontic adhesives using modern high-inten- sity visible curing lights. Am J Orthod Dentofacial Orthop 2003; 124: 316-22.
  • Uhl A, Michaelis C, Mills RW, Jandt KD. The influence of storage and indenter load on the Knoop hardness of dental composites polymerized with LED and halogen Technologies. Dent Mater 2004b; 20: 21-8.
  • Quance SC, Shorthall AC, Harrington E, Lumley PJ Effect of exposure intensity and postcure temperature storage on hardness of contemporary photo activated composites. J Dent 2001; 29: 553- 60.
  • Yap AUJ, Wattanapayungkul P, Chung SM. Influence of the polymerization process on compo- site resistance to chemical degradation by food- simulating liquids. Oper Dent 2003b; 28: 723-7.
  • Ferracane JL, Berge HX, Condon JR In vitro aging of dental composites in water-effect of degree of conversion, filler volume and filler/matrix coupling. J Biomed Mater Res 1998; 42: 465-72.
  • Sakaguchi RL, Douglas WH, Peters MCRB. Curing light performance and polymeriza- tion of composite restorative materials. J Dent 1992; 20: 183-8.
  • Saygılı G, Şahmalı S, Demirel F. Changes in the mechanical properties of tooth-colored direct restorative materials in relation to time. Polym Adv Technol 2003; 14: 616-22.
  • Willems G, Lambrechts P, Braem M, Vanherle G. Composite resins in the 21st century. Quinttessence Int 1993; 24: 641-57.
  • Gökay N, Türkün LŞ. Farklı kompozit rezin materyallerin aşınma ve sertlik özelliklerinin karşılaştırmalı olarak incelenmesi. A Ü Diş Hek Fak Derg 2002; 28: 263-70.
  • Say EC, Civelek A, Nobecourt A, Ersoy M, Güleryüz C. Wear and microhardness of different resin composite materials Oper Dent 2003; 28: 628- 34.
  • Knobloch LA, Kerby RE, Clelland N, Lee J. Hardness and degree of conversion of posterior pack- able composites. Oper Dent 2004; 29: 642-9.
  • Sharkey S, Ray N, Burke F, Ziada H, Hannigan A. Surface hardness of light activated resin composites cured by two different visible light sources: an in vitro study. Quintessence Int 2001; 32: 401-5.
  • Schulze KA, Marshall SJ, Gansky SA, Marshall GW Color stability and hardness in dental composites after accelerated aging. Dent Mater 2003; 19: 612-9.
  • Bağış YH, Kasar B, Ulusoy N. Işıkla polimerize olan iki hibrid reçinenin yüzey sertlik- lerinin in vitro olarak incelenmesi. A Ü Diş Hek Fak Derg 1996; 23: 153-60.
  • Ulusoy N, Bağış YH, Kasar B. Isı ve ışık fırınında polimerizasyonları tamamlanan iki hibrid kompozit rezinin yüzey sertliklerinin incelenmesi. A. Ü Diş Hek Fak Derg 1998; 25: 221-8.
  • Vandewalle KS, Roberts HW, Tiba A, Charlton DG. Thermal emission and curing efficien- cy of LED and halojen curing lights. Oper Dent 2005; 30: 257-64.
  • Asmussen E, Peutzfeldt A. Light-emitting diode curing: influence on selected properties of resin composites. Quintessence Int 2003b; 34: 71-5.
  • Oberholzer TG, Preez ICD, Kidd M. Effect of LED curing on the microleakage, shear bond strength and surface hardness of a resin-based com- posite restoration. Biomaterials 2005; 26: 3981-6.
  • Tarle Z, Meniga A, Ristic M. The effect of the photopolymerization method on the quality of composite resin samples. J Oral Rehabil 1998; 25: 436-42.
  • Rahiotis, C., Kakaboura, A, Loukidis M, Vougiouklakis G. Curing efficiency of various types of light curing units. Eur J Oral Sci 2004; 112: 89- 94.
  • Schneider LFJ, Consani S, Sinhoreti MAC, Correr Sobrinho L, Milan FM. Temperature change and hardness with different resin composites and photo-activation methods. Oper Dent 2005; 30: 516- 21.
  • Peris A.R, Mitsui FHO, Amaral CM, Ambrosano GMB, Pimenta LAF. The effect of com- posite type on microhardness when using quartz- tungsten halogen or LED lights. Oper Dent 2005; 30: 649-54.
  • Knezevic A, Tarle Z, Meniga A, Sutalo, J, Pichler G, Ristic M. Degree of conversion and tem- perature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil 2001; 28: 586-91.