Çay Çalısı Budama Atıkları Kullanılarak Eosin Y Boyarmaddesinin Sulu Çözeltiden Biyosorpsiyonu için İzoterm Verilerinin İncelenmesi

Bu çalışmada, atık çay çalısından elde edilen düşük maliyetli, bol miktarda bulunan, verimli ve çevre dostu bir biyo-atık, adsorban olarak değerlendirilmiştir. Çevreyi kirleten maddelerin giderimleri için bu çalışmada kullanılan doğal ürün, mevcut pahalı yöntem ve hammaddelerine alternatif olarak sunulmuştur. Eosin Y (EY) sulu çözeltiden adsorpsiyonunda, etkileşim süresi, pH, adsorban miktarı vb. gibi çeşitli parametrelerin etkileri incelenmiş ve optimum deney koşulları ortaya konmuştur. Deneysel sonuçlar ışığında, Langmuir izoterm modelinde, 25°C'da maksimum adsorpsiyon kapasitesi 3,56 mg/g olarak hesaplanmıştır. Veriler ışığında Freundlich modelinin deneysel verilerle daha iyi bir uyum sağladığı tespit edilmiştir. Mevcut araştırmalar ve bildirilen diğer adsorbanlarla karşılaştırıldığında, çay çalısının, sulu çözeltiden EY'nin giderilmesi için düşük maliyetli doğal ürün olması sebebiyle, bir seçenek olarak uygulanabileceği sonucuna varılmıştır.

Investigation of Isotherm Data for Biosorption of Eosin Y Dye from Aqueous Solution using Tea Stem Pruning Wastes

In this study, by evaluating the low-cost, abundant, efficient and environment-friendly bio-waste obtained from the waste of tea stem, it has been ensured that this waste will be an alternative to the current expensive methods and raw materials in terms of the removal of environmental pollutants. Eosin Y (EY) adsorption from the aqueous solution, the effects of various parameters such as adsorbent dosage, interaction time and pH were investigated and optimum experimental conditions were determined. In the Langmuir isotherm model, experimental results were obtained at a maximum adsorption capacity of 3.56 mg/g at 25 ° C. In the light of the data, it was determined that the Freundlich model is more compatible with the experimental data. It is concluded that tea stem can be applied as an option since it is a low cost and natural product for removing EY from aqueous solution, compared with the present research and other adsorbents reported in the literature

___

  • Akar, S. T., Celik, S., Tunc, D., Balk, Y. Y., & Akar, T. (2016). Biosorption potential of surface-modified waste sugar beet pulp for the removal of Reactive Yellow 2 (RY2) anionic dye. Turkish Journal of Chemistry, 40(6), 1044-1054. Retrieved from ://WOS:000390326500018
  • Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 69(3), 229-238. Retrieved from ://WOS:000187208500002
  • Bai, H. H., Zhang, Q. S., He, T., Zheng, G., Zhang, G. Q., Zheng, L. B., & Ma, S. Q. (2016). Adsorption dynamics, diffusion and isotherm models of poly(NIPAm/LMSH) nanocomposite hydrogels for the removal of anionic dye Amaranth from an aqueous solution. Applied Clay Science, 124, 157-166. Retrieved from ://WOS:000375162300019
  • Bazylevich, A., Patsenker, L. D., & Gellerman, G. (2017). Exploiting fluorescein based drug conjugates for fluorescent monitoring in drug delivery. Dyes and Pigments, 139, 460-472.
  • Cyprych, K., Kopczyńska, Z., Kajzar, F., Rau, I., & Mysliwiec, J. (2015). Tunable wavelength light emission and amplification in Rhodamine 6G aggregates. Advanced Device Materials, 1(2), 69-73. doi:10.1179/2055031615Y.0000000004
  • Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., . . . Xu, J. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere.
  • Errais, E., Duplay, J., Darragi, F., M'Rabet, I., Aubert, A., Huber, F., & Morvan, G. (2011). Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters. Desalination, 275(1-3), 74-81. Retrieved from ://WOS:000292584900009
  • Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). BODIPY dyes in photodynamic therapy. Chemical Society Reviews, 42(1), 77-88. Retrieved from ://WOS:000311968700006
  • Kaushik, P., Mishra, A., Malik, A., & Pant, K. K. (2014). Biosorption of Textile Dye by Aspergillus lentulus Pellets: Process Optimization and Cyclic Removal in Aerated Bioreactor. Water Air and Soil Pollution, 225(6). Retrieved from ://WOS:000338334200017
  • Lin, Y. C., Ma, J., Liu, W., Li, Z. Y., & He, K. (2019). Efficient removal of dyes from dyeing wastewater by powder activated charcoal/titanate nanotube nanocomposites: adsorption and photoregeneration. Environmental Science and Pollution Research, 26(10), 10263-10273. Retrieved from ://WOS:000464852200075
  • Moghazy, R. M. (2019). Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. Water Sa, 45(1), 20-28. Retrieved from ://WOS:000457592900003
  • Molupe, N., Babu, B., Oluwole, D. O., Prinsloo, E., Mack, J., & Nyokong, T. (2018). The investigation of in vitro dark cytotoxicity and photodynamic therapy effect of a 2,6-dibromo-3,5-distyryl BODIPY dye encapsulated in Pluronic (R) F-127 micelles. Journal of Coordination Chemistry, 71(21), 3444-3457. Retrieved from ://WOS:000461451600002
  • Oymak, T., & Eruygur, N. (2019). Effective and rapid removal of cationic and anionic dyes from aqueous solutions using Elaeagnus angustifolia L. fruits as a biosorbent. Desalination and Water Treatment, 138, 257-264. Retrieved from ://WOS:000454437500028
  • Patil, N. N., & Datar, A. G. (2016). Applications of natural dye from Ixora coccinea L. in the field of textiles and cosmetics. Coloration Technology, 132(1), 98-103.
  • Ponnusami, A. B., Kumar, S., & Bansal, P. (2018). Biosorption and kinetic studies of Malachite Green (MG) dye removal from aqueous solution using a low-cost adsorbent prepared from male palm tree flower (Borassus flabellifer). Desalination and Water Treatment, 121, 219-232. Retrieved from ://WOS:000446586600030
  • Raj, R. A., Manimozhi, V., & Saravanathamizhan, R. (2019). Adsorption studies on removal of Congo red dye from aqueous solution using petroleum coke. Petroleum Science and Technology, 37(8), 913-924. Retrieved from ://WOS:000463851200007
  • Rapo, E., Szep, R., Keresztesi, A., Suciu, M., & Tonk, S. (2018). Adsorptive Removal of Cationic and Anionic Dyes from Aqueous Solutions by Using Eggshell Household Waste as Biosorbent. Acta Chimica Slovenica, 65(3), 709-717. Retrieved from ://WOS:000444705500025
  • Shak, A., Dawood, S., & Sen, T. K. (2017). Performance and dynamic modelling of mixed biomass-kaolin packed bed adsorption column for the removal of aqueous phase methylene blue (MB) dye. Desalination and Water Treatment, 82, 67-80. Retrieved from ://WOS:000410814600008
  • Sharma, S., Hasan, A., Kumar, N., & Pandey, L. M. (2018). Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environmental Science and Pollution Research, 25(22), 21605-21615. Retrieved from ://WOS:000440115600033
  • Singh, H., Chauhan, G., Jain, A. K., & Sharma, S. (2017). Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of environmental chemical engineering, 5(1), 122-135.
  • Subramaniam, R., & Ponnusamy, S. K. (2015). Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology. Water Resources and Industry, 11, 64-70.
  • Zhou, L., Zhou, H. J., Hu, Y. X., Yan, S., & Yang, J. L. (2019). Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. Journal of Environmental Management, 234, 245-252. Retrieved from ://WOS:00046019500002
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü