HASTANE YERİ SEÇİMİNDE NESNEL AĞIRLIKLANDIRMALI SEZGİSEL BULANIK VIKOR YÖNTEMİ

Yer seçim sorunları Endüstri Mühendisliği alanının en çok çalışılan konularından biri olup hastane yeri seçimi konusunda ise diğer yapılara oranla çok geniş çaplı araştırmalar yapılmadığı görülmektedir. Hastanelerin ekonomik yapı içerisindeki yerleri, toplum sağlığı açısından taşıdıkları önem, göç olgusuyla beraber yaşanan kapasite sorunları gibi unsurlar göz önüne alındığında hastane yeri seçiminin taşıdığı stratejik önem daha iyi anlaşılmaktadır. Bu çalışmada, karar uzmanlarının görüşlerindeki olası belirsizlikleri daha iyi sayısallaştırma yeteneğine sahip olan sezgisel bulanık sayılar (intiutionistic fuzzy numbers) kullanılarak hastane yeri seçimi konusunda özgün bir bulanık karar destek modeli önerisi getirilmektedir. Yer seçim uzmanları ve sağlık yöneticilerinden oluşan bir ekibin kurulması ve bu ekibin olası hastane yeri adaylarını belli kriterler çerçevesinde değerlendirmesi yoluyla bilgi toplama işlemlerinin yapıldığı yöntemde, ikinci özgün yan hastane yeri seçiminde uzmanların ağırlıklarının da hesaba katıldığı bir grup karar verme yaklaşımının öneriliyor oluşudur. Yöntemde nesnel ağırlıklandırma yoluyla uzman görüşlerindeki öznellik sınırlandırılmakta, sıralı ağırlıklı ortalama (OWA-ordered weighted averaging) yönteminin kriter ağırlıklandırmada tercih edilmesi ile son özgün yan ortaya konulmaktadır. Analiz yöntemi olarak ise sezgisel bulanık VIKOR yaklaşımından faydalanılmaktadır. Önerilen model, İstanbul’un bir ilçesi için uygulanmış ve analiz sonuçları paylaşılarak ileriki çalışmalar için öneriler getirilmiştir.

INTUITIONISTIC FUZZY VIKOR METHOD WITH OBJECTIVE WEIGHTING FOR HOSPITAL SITE SELECTION

Location selection problem is among the most studied research fields of industrial engineering area but studies on hospital site selection are relatively scarce in literature. Hospital location analysis carries a critical and strategic importance, especially when considering their meaning in economic structure, public health management, or in terms of inadequate capacity problems arising from immigration phenomenon, etc. In this study, a fuzzy multiple attribute decision making model is proposed. As a novelty, the model utilizes intuitionistic fuzzy numbers because they have better capability in quantification of vagueness in experts’ opinions. In model, data are gathered from decision experts who have different experience levels represented by expertise weights in location analysis and health management. Experts evaluate site alternatives by utilizing linguistic terms. An objective weighting approach is chosen as the final novelty for determining the importance of criteria with the aim of reducing natural subjectivity embedded in expert evaluations. There are two fundamental methods in model; OWA (ordered weighted averaging) is chosen for objective weighting of attributes and intuitionistic fuzzy VIKOR method is utilized for analysis of the alternatives. The application is performed in a district of Istanbul and the analysis results and future research suggestions are shared.

___

  • Adalı, E. A. & Tuş, A. (2019). Hospital site selection with distance-based multi-criteria decision-making methods. International Journal of Healthcare Management. Doi: https://doi.org/10.1080/20479700.2019.1674005.
  • Ahmed, A. H., Mahmoud, H., & Aly, A.M.M. (2016). Site Suitability Evaluation for Sustainable Distribution of Hospital Using Spatial Information Technologies and AHP: A Case Study of Upper Egypt, Aswan City. Journal of Geographic Information System, 8, 578-594. https://doi.org/10.4236/jgis.2016.85048.
  • Ajaj, Q. M., Shareef, M. A., Jasim, A. T., Hasan, S. F., Noori, A. M., & Hassan, N. D. (2019). An AHP-based GIS for a New Hospital Site Selection in the Kirkuk Governorate, 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering, Mosul, Iraq, 176-181. https://doi.org/10.1109/ICECCPCE46549.2019.203769.
  • Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3.
  • Aydın, Ö. (2009). Bulanık AHP ile Ankara için Hastane Yeri Seçimi. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(2), 87-104. Erişim adresi: https://iibfdergi.deu.edu.tr/index.php/cilt1-sayi1/article/view/260.
  • Aydın, Ö., Öznehir, S. ve Akçalı, E. (2009). Ankara için Optimal Hastane Yeri Seçiminin Analitik Hiyerarşi Süreci ile Modellenmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(2), 69-86. Erişim adresi: https://dergipark.org.tr/en/download/article-file/194657.
  • Chatterjee, D. & Mukherjee, B. (2013). Potential Hospital Location Selection using AHP: A Study in Rural India. International Journal of Innovative Technology and Research, 1(4), 304-314. https://doi.org/10.5120/12447-9144.
  • Chiu, J. E. & Tsai, H. H. (2013). Applying analytic hierarchy process to select optimal expansion of hospital location: The case of a regional teaching hospital in Yunlin, 10th International Conference on Service Systems and Service Management, Hong Kong, China. https://doi.org/10.1109/ICSSSM.2013.6602588 .
  • Çelikbilek, Y. (2018). Group Decision Making for Hospital Location Selection Using VIKOR under Fuzzy Environment. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, 5, 435-450. https://doi.org/10.38079/igusabder.425439.
  • Dehe, B. & Bamford, D. (2015). Development, test and comparison of two Multiple Criteria Decision Analysis (MCDA) models: A case of healthcare infrastructure location. Expert Systems with Applications, 42, 6717-6727. https://doi.org/10.1016/j.eswa.2015.04.059.
  • Dell’Ovo, M., Capolongo, S., & Oppio, A. (2018). Combining spatial analysis with MCDA for the siting of healthcare facilities. Land Use Policy, 76, 634-644. https://doi.org/10.1016/j.landusepol.2018.02.044.
  • Fuller, R. & Majlender, P. (2003). On obtaining minimal variability OWA operator weights. Fuzzy Sets and Systems, 136, 203-215. https://doi.org/10.1016/S0165-0114(02)00267-1.
  • Gibson, J. L., Martin, D. K. & Singer, P. A. (2004). Setting priorities in health care organizations: criteria, processes, and parameters of success. BMC Health Services Research, 4(25). https://doi.org/10.1186/1472-6963-4-25.
  • Gupta, P., Mehlawat, M. K., & Grover, N. (2016). Intuitionistic fuzzy multi-attribute group decision-making with an application to plant location selection based o a new extended VIKOR method. Information Sciences, 370-371, 184-203. https://doi.org//10.1016/j.ins.2016.07.058.
  • Han, R. C. & Xiao, J. X. (2009). Deciding weighing by entropy value method is an error, 2nd International Conference on Information and Computing Science, Manchester-UK, 255-257. https://doi.org/10.1109/ICIC.2009.270. Jordan, H., Roderick, P., Martin, D., & Barnett, S. (2004). Distance, rurality and the need for care: access to health services in South West England. International Journal of Health Geographics, 3(21). https://doi.org/10.1186/1476-072X-3-21.
  • Kaya, T. & Kahraman, C. (2011). Fuzzy multiple criteria forestry decision making based on an integrated VIKOR and AHP approach. Expert Systems with Applications, 38, 7326-7333. https://doi.org/10.1016/j.eswa.2010.12.003.
  • Kim, J. I., Senaratna, D. M., Ruza, J., Kam, C., & Ng, S. (2015). Feasibility Study on an Evidence-Based Decision-Support System for Hospital Site Selection for an Aging Population, Sustainability, 7, 2730-2744. https://doi.org/10.3390/su7032730.
  • Kuo, Y. C., Lu, S. T., Tzeng, G. H., Lin, Y. C., & Huang, Y. S. (2013). Using Fuzzy Integral Approach to Enhance Site Selection Assessment – A Case Study of the Optoelectronics Industry. Procedia Computer Science, 17, 306-313. https://doi.org/10.1016/j.procs.2013.05.040.
  • Li, D. F. (2010). A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Computers & Mathematics with Applications, 60(6), 1557-1570. https://doi.org/10.1016/j.camwa.2010.06.039.
  • Liao, H. & Xu, Z. (2013). A VIKOR-based method for hesitant fuzzy multi-criteria decision making. Fuzzy Optimization and Decision Making, 12(4), 373-392. https://doi.org/10.1007/s10700-013-9162-0.
  • Liu, K. M., Lin, S. H., Hsieh, J. C., & Tzeng, G. H. (2018). Improving the food waste composting facilities site selection for sustainable development using a hybrid modified MADM model. Waste Management, 75, 44-59. https://doi.org/10.1016/j.wasman.2018.02.017.
  • Mahmud, T., Sikder, J., & Tripura, S. (2018). Knowledge-based Decision Support System to Select Hospital Location. IOSR Journal of Computer Engineering, 20(3), 39-47. https://doi.org/10.9790/0661-2003023947.
  • Moradian, M. J., Ardalan, A., Nejati, A., Boloorani, A. D., Akbarisari, A., & Rastegarfar, B. (2017). Risk Criteria in Hospital Site Selection: A Systematic Review. PLoS Currents. https://doi.org/10.1371/currents.dis.a6f34643f3cd22c168b8c6f2deeae86d.
  • Nobre, F. F., Trotta, L. T. F., & Gomes, L. F. A. M. (1999). MULTI-CRITERIA DECISION MAKING – AN APPROACH TO SETTING PRIORITIES IN HEALTH CARE. Statistics in Medicine, 18, 3345-3354. https://doi.org/10.1002/(SICI)1097-0258(19991215)18:23<3345::AID-SIM321>3.0.CO;2-7.
  • O’Hagan, M. (1988). Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic. Proceedings of the 22nd Annual IEEE Asilomar Conference on Signal, Systems, Computers, 681-689. Pacific Grov. https://doi.org/10.1109/ACSSC.1988.754637.
  • Opricovic, S. (1998). Multicriteria optimization of civil engineering, Faculty of Civil Engineering, Belgrade. Erişim adresi: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1600129.
  • Opricovic, S. (2011). Fuzzy VIKOR with an Application to Water Resources Planning. Expert Systems with Applications, 38(10), 12983-12990. https://doi.org/10.1016/j.eswa.2011.04.097.
  • Opricovic, S. & Tzeng, G. H. (2004). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514-529. https://doi.org/10.1016/j.ejor.2006.01.020.
  • Rikalovic, A., Cosic, I., & Lazarevic, D. (2014). GIS Based Multi-criteria Analysis for Industrial Site Selection. Procedia Engineering, 69, 1054-1063. https://doi.org/10.1016/j.proeng.2014.03.090.
  • Ruan, D., Kabak, Ö., & Quinones, R. (2013). An ordered weighted averaging operator-based cumulative belief degree approach for energy policy evaluation. International Journal of Advanced Operations Management, 5(1), 58-73. https://doi.org/10.1504/IJAOM.2013.051326.
  • Sen, H. (2019). HOSPITAL LOCATION SELECTION WITH ARAS-G. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics, 1, 359-365. Erişim adresi: https://dergipark.org.tr/tr/download/article-file/381446.
  • Senvar, O., Otay, I., & Bolturk, E. (2016). Hospital Site Selection via Hesitant Fuzzy TOPSIS. IFAC-PapersOnLine, 49(12), 1140-1145. https://doi.org/10.1016/j.ifacol.2016.07.656.
  • Soltani, A., Inaloo, R. B., Rezaei, M., Shaer, F., & Riyabi, M. A. (2019). Spatial analysis and urban land use planning emphasising hospital site selection: a case study of Isfahan city. Bulletin of Geography. Socio-economic Series, 43, 71-89. https://doi.org/10.2478/bog-2019-0005.
  • Soltani, A. & Marandi, Z. (2011). HOSPITAL SITE SELECTION USING TWO-STAGE FUZZY MULTI-CRITERIA DECISION MAKING PROCESS. Journal of Urban and Environmental Engineering, 5(1), 32-43. https://doi.org/10.4090/juee.2011.v5n1.032043.
  • Song, L., Liu, C., & Li, B. (2015). Optimal selection of location for community hospitals a case of Huilongguan region in Beijing, IEEE International Conference on Information and Automation, Lijiang, China, 2803-2806. https://doi.org/10.1109/ICInfA.2015.7279763.
  • Stern, Z. S., Mehrez, A., Tal, A. G., & Shemuel, B. (1995). THE LOCATION OF A HOSPITAL IN A RURAL REGION: THE CASE OF THE NEGEV. Location Science, 3(4), 255-266. https://doi.org/10.1016/0966-8349(96)00002-2.
  • Şahin, T., Ocak, S., & Top, M. (2019). Analytic hierarchy process for hospital site selection. Health Policy and Technology, 8, 42-50. https://doi.org/10.1016/j.hlpt.2019.02.005.
  • Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90, 3048-3056. https://doi.org/10.1016/j.buildenv.2005.12.016.
  • Wang, Y. M. & Parkan, C. (2005). A minimax disparity approach for obtaining OWA operator weights. Information Sciences, 175, 20-29. https://doi.org/10.1016/j.ins.2004.09.003.
  • Weber, A. (1909). Theory of the location of industries, Chicago: The University of Chicago Press.
  • Wissem, E., Ahmed, F., & Mounir, B. (2011). Multicriteria method for a site selection of a new hospital in Sfax, 4th International Conference on Logistics, Hammamet, Tunusia, 32-37. https://doi.org/10.1109/LOGISTIQUA.2011.5939399.
  • Wu, C. R., Lin, C. T., & Chen, H. C. (2007). Optimal selection of location for Taiwanese hospitals to ensure a competitive advantage by using the analytic hierarchy process and sensitivity analysis. Building and Environment, 42, 1431-1444. https://doi.org/10.1016/j.jenvman.2009.04.010.
  • Wu, Y., Zhang, B., Xu, C., & Li, L. (2018). Site selection decision framework using fuzzy ANP-VIKOR for large commerical rooftop PV system based on sustainability perspective. Sustainable Cities and Society, 40, 454-470. https://doi.org/10.1016/j.scs.2018.04.024.
  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18(1), 183-190. https://doi.org/10.1109/21.87068.
  • Yu, L. & Lai, K. K. (2011). A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support. Decision Support Systems, 51, 307-315. https://doi.org/10.1016/j.dss.2010.11.024.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  • Zhang, Y., Zhang, Y., Li, Y., Liu, S., & Yang, J. (2017). A Study of Rural Logistics Center Location Based on Intuitionistic Fuzzy TOPSIS. Mathematical Problems in Engineering. https://doi.org/10.1155/2017/2323057.