METİN MADENCİLİĞİNİN TALEP PLANLAMADAKİ ROLÜNÜN İNCELENMESİ

Uzun dönem kârlılık ve müşteri memnuniyeti açısından en parlak ürün çeşitlerini belirlemek, günümüz imalatçıları için stratejik bir öneme sahiptir. Bu amaç doğrultusunda, dış çeşitliliği azaltmayı sağlayan çeşitli işlemsel modellere ihtiyaç duyulur. Özellikle ana ve ikame talebin belirlenebilmesi için geliştirilecek talep tahmin modelleri kritik öneme sahiptir. Ancak, yapılandırılabilir ürünlerde olduğu gibi kestirilecek parametre sayısı fazlaca olduğunda, bu modeller genellikle “boyutsallık lanetine” maruz kalır. Yapılandırılabilir ürünler, önceden tanımlanmış ürün özelliklerinin çeşitli kombinasyonlarıdır. Çok sayıda ve derinlikteki ürün özelliği, talep tahmin sürecini rahatlıkla zorlaştırabilir çünkü teorik olarak böyle bir ürün milyonlarca farklı kombinasyonda yapılandırılabilir. Bu çalışmada, yapılandırılabilir bir ürün için müşteri değerlendirmeleri kullanılarak, büyük miktarda kritik bilgi kaybetmeden ürün özelliklerinin sayısını azaltıp talep tahmini sürecinin nasıl desteklenebileceği tartışılmıştır. Başvurulan çeşitli metin madenciliği tekniklerinin ürettiği sonuçlar, talep modelleri oluşturulurken, bu gibi niteliksel modellerin daha iyi bir çıkarım ve öngörü elde etmek için kullanılabileceğini göstermektedir.

___

Abrahams, A.S., Fan, W., Jiao, J., Wang, G.A. & Zhang, Z.J. (2014). An Integrated Text Analytic Framework for Product Defect Discovery, Production and Operations Management, 24(6), 975-990. doi: 10.1111/poms.1230.

Berezina, K., Bilgihan, A., Cobanoglu, C. & Fevzi, O. (2015). Understanding Satisfied and Dissatisfied Hotel Customers: Text Mining of Online Hotel Reviews, Journal of Hospitality Marketing & Management, 25(1), 1-24.

Berger, I.E., Cunningham, P. & Drumwright, M.E. (2007). Mainstreaming Corporate Social Responsibility: Developing Markets for Virtue. California Management Review, 49, 132-157.

Berry, M.W. (Ed.). (2004). Survey of Text Mining: Clustering, Classification, and Retrieval. Springer-Verlag. New York, USA, 244s.

Berry, M.W. & Castellanos, M. (Ed.). (2008). Survey of Text Mining II - Clustering, Classification, and Retrieval. Springer-Verlag. London, UK, 240s.

Boone, T., Ganeshan, R., Hicks, R.L. & Sanders, N.R. (2018). Can Google Trends Improve Your Sales Forecast? Production and Operations Management, 27, 1770-1774.

Cave, A. What Will We Do When The World's Data Hits 163 Zettabytes In 2025? www.forbes.com/sites/andrewcave/2017/04/13/what-will-we-do-when-the-worlds-data-hits-163-zettabytes-in-2025 (Erişim Tarihi: 10.03.2019).

Chan, S.W.K. & Chong, M.W.C. (2017). Sentiment Analysis in Financial Texts, Decision Support Systems, 94, 53-64.

Chong, A.Y.L., Li, B., Ngai, E.W.T., Ch’ng, E. & Lee, F. (2016). Predicting Online Product Sales via Online Reviews, Sentiments, and Promotion Strategies: A Big Data Architecture and Neural Network Approach, International Journal of Operations and Production Management, 36(4), s. 358-383.

Chou, Y.C., Chao, C.Y. & Yu, H.Y. (2019). A Résumé Evaluation System Based on Text Mining. International Conference on Artificial Intelligence in Information and Communication, 11-12 Şubat, Okinawa, Japonya, 52-57.

Cui, R., Gallino, S., Moreno, A. & Zhang, D.J. (2018). The Operational Value of Social Media Information, Production and Operations Management, 27, 1749-1769.

De, S.R. & Bandyopadhyay, S.K. (2015). Sentiment Analysis on Product Purchase Through E-Commerce, International Journal of Scientific Research and Management, 5(6), 5441-5444.

Ferguson, S. & Donndelinger, F. (2010). A Multidisciplinary Approach to Market Segmentation and Product Family Definition. 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 13-15 Eylül, Fort Worth, Texas, A.B.D., 1-12.

Fisher, M.L. (1997). What is the Right Supply Chain for Your Product? Harvard Business Review, 75(2), 105-116.

Godnov, U. & Redek, T. (2016). Application of Text Mining in Tourism: Case of Croatia. Annals of Tourism Research, 58(162), 162-166.

Hong, J.W. & Park, S.B. (2019). The Identification of Marketing Performance Using Text Mining of Airline Review Data, Mobile Information Systems, Cilt. 2019. doi: 10.1155/2019/1790429.

Hotho, A., Nürnberger, A. & Paaß, G. (2005). A Brief Survey of Text Mining, Ldv Forum, 20, 19-62.

Hu, C. & Lee, C.C. (2004). Analyzing Hotel Customers' Ecomplaints from an Internet Complaint Forum, Journal of Travel & Tourism Marketing, 17(2-3), 167-181. doi: 10.1300/J073v17n02_13.

Isikli, E. (2012). Decision Support Models for the External Variety Of Configurable Products (Doktora Tezi). Wayne State University, A.B.D, 102s.

Isikli E. & Ketenci M. (2020). Using Consumer Reviews for Demand Planning: Case of Configurable Products. In: Kahraman C., Cebi S., Cevik Onar S., Oztaysi B., Tolga A., Sari I. (Eds.) Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making: Proceedings of the INFUS 2019 Conference, Istanbul, Turkey, July 23-25, 2019 (pp.354-361). Springer, Cham (DOI: 10.1007/978-3-030-23756-1_44).

Kostakos, P. (2018). Public Perceptions on Organised Crime, Mafia, and Terrorism: A Big Data Analysis Based on Twitter And Google Trends, International Journal of Cyber Criminology, 12(1), s. 282-299.

Li, X.Q., Gao, F., Xiang, W.G., Shi, T.Y. & Li, P. (2018). Application of Text Mining Techniques in Railway Safety Supervision System, IOP Conference Series: Earth and Environmental Science, 189(6), s. 1-7.

Linoff, G.S., Berry, M.J. (2010). Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, 3. Baskı, VitalSource Bookshelf version. WILEY. A.B.D., 888s.

Lowenstein, M.W. (2014). Customers Inside, Customers Outside: Designing and Succeeding With Enterprise Customer-Centricity Concepts, Practices, and Applications. Business Expert Press, LLC. USA, 154s.

Maurer C. & Schaich S. (2011). Online Customer Reviews Used as Complaint Management Tool. ss 499-511. Law R., Fuchs M. & Ricci F. ed. 2011. Information and Communication Technologies in Tourism, Springer, Vienna, 610s.

Morimoto, T. & Kawasaki, Y. (2017). Forecasting Financial Market Volatility Using a Dynamic Topic Model, Asia-Pacific Financial Markets, 24(3), 149-167.

Murphy, R. (2019). Local Consumer Review Survey. BrightLocal. https://www.brightlocal.com/research/local-consumer-review-survey/

Podium. (2017). The Complete Guide to Online Reviews [Beyaz bülten]. Alındığı yer: https://www.podium.com/resources/podium-state-of-online-reviews/.

Ramdas, K. (2003). Managing product variety: An integrative review and research directions, Production and Operations Management, 12, 79-101.

Shilakes, C.C. & Tylman, J. Enterprise Information Portals, Merrill Lynch, Inc., New York, A.B.D., 16 Kasım 1998.

Song, B., Yoon, B., Lee, C. & Park, Y. (2017). Development of a Service Evolution Map for Service Design Through Application of Text Mining to Service Documents, Research in Engineering Design, 28(2), 251-273.

Turgutlu, K., Isikli, E. (2016). Daily Touristic Plan Recommendation Using Text Mining. Federated Conference on Computer Science and Information Systems, Gdansk, Polonya, 14-16 Eylül, 41–48.

Wong, C.U.I. & Qi, S. (2017). Tracking the Evolution of a Destination's Image by Text-Mining Online Reviews - The Case of Macau, Tourism Management Perspectives, 23, 19-29.

Xia, L. & Bechwati, N.N. (2008). Word of Mouse: The Role of Cognitive Personalization in Online Consumer Reviews, Journal of Interactive Advertising, 9(1), 3-13.

Ye, Q., Law, R. & Gu, B. (2008). The Impact of Online User Reviews on Hotel Room Sales, International Journal of Hospitality Management, 28, 180-182.

___

APA Işıklı, E. (2021). METİN MADENCİLİĞİNİN TALEP PLANLAMADAKİ ROLÜNÜN İNCELENMESİ . Endüstri Mühendisliği , 32 (2) , 286-306 . DOI: 10.46465/endustrimuhendisligi.796901