ERGONOMİK MONTAJ HATTI DENGELEME PROBLEMİNE FARKLI ÇOK AMAÇLI ÇÖZÜM YAKLAŞIMLARI

Montaj hattı dengeleme problemlerinde (MHDP) istasyon sayısı, çevrim zamanı gibi ekonomik kısıtların yanında gerçekleştirilen görevler nedeniyle oluşabilecek zorlanmalardan kaynaklanan riskler dikkate alınmalıdır. Çünkü montaj istasyonlarında tekrarlı işler ve bu işler esnasında sergilenen statik çalışma duruşları Kas İskelet Sistemi Rahatsızlıklarının (KİSR) oluşmasına yol açmaktadır. Bu durum çalışanların ve dolayısıyla montaj hatlarındakiişgücü verimliliğini olumsuz etkilemektedir. Bu çalışmada istasyonun çevrim zamanını ve istasyonların ergonomik risk skorundan pozitif sapmalarının toplamını enküçükleyen iki amaçlı bir matematiksel model geliştirilmiştir. Önerilen çok amaçlı modelin çözümünde, ağırlıklı toplam, konik skalerleştirme, epsilon kısıt ve melez yöntemleri uygulanmıştır. Bu yöntemler karşılaştırılarak her bir yöntemde elde edilen pareto noktalar incelenmiştir. Geliştirilen modelin gerçek hayat uygulaması bir beyaz eşya fabrikasında gerçekleştirilmiştir. Toplam 32 istasyon, 78 iş elemanından oluşan tek modelli basit montaj hattında Hızlı Tüm Vücut Değerlendirme (Rapid Entire Body Assessment-REBA) analizi yapılarak çalışma duruşlarına ilişkin ergonomik risk skorları belirlenmiştir. Montaj hattından günlük elde edilmek istenen çıktı miktarına göre çevrim süresi 41 saniye olarak belirlenmiştir. Model ve çözüm yöntemleri The General Algebraic Modelling System(GAMS) programında kodlanarak çözdürülmüş ve sonuçlar elde edilmiştir. Konik Skalerleştirme Yöntemi ergonomik MHDP’ de ilk kez kullanılmış böylece, klasik çözüm yöntemlerinin tarayamadığı çözüm alanlarında farklı pareto çözümler elde edilmiştir. Ergonomik riskler dikkate alınarak elde edilen çözümlerde yüksek riskli istasyon sayısında azalma olduğu görülmüştür.

DIFFERENT MULTI-OBJECTIVE SOLUTION APPROACHES TO THE ERGONOMIC ASSEMBLY LINE BALANCING PROBLEM

In assembly line balancing problems (ALBP), beside technological constraints such as the number of stations and cycle time as well as the strain loads that may occur due to operations should also be taken into account. Because repetitive works in assembly stations and static body postures during these works cause Musculoskeletal Disorders (WMSD) and thus negatively affect the productivity and efficiency of the workers and therefore the assembly lines. In this study, a two-objective mathematical model has been developed that minimizes the cycle time and the sum of positive deviations from the ergonomic risk score of the stations. In the solution of the multi-objective model, weighted sum, conical scalarization, epsilon constraint and hybrid methods are applied. By comparing these methods, pareto points obtained in each method were examined. The real life application of the developed model was realized in a home-appliance factory. REBA (Rapid Entire Body Assessment) analysis was performed on a single-model assembly line consisting of 32 stations and 78 operations, and ergonomic risk scores for working postures were determined. The cycle time is determined as 41 seconds, depending on the amount of daily outputdesired to be obtained from the assembly line. Model and solution methods were coded in GAMS program and results were given. Conical Scalarization method is used for the first time in ergonomic ALBP, and different pareto solutions have been obtained in the solution areas that classical solution methods cannot scan. Considering the ergonomic risks, it has been observed that there is a decrease in the number of high-risk stations in the solutions.

___

  • Akyol, Ş. & Baykasoğlu, A. (2019). A multiple-rule based constructive randomized search algorithm for solving assembly line worker assignment and balancing problem. Journal of Intelligent Manufacturing 30(1), 557–573. Doi : https://doi.org/10.1007/s10845-016-1262-6.
  • Battaïa, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches. International Journal of Production Economics (142), 259–277. Doi : https://doi.org/10.1016/j.ijpe.2012.10.020.
  • Battini, D., Calzavara M., Otto, A. & Sgarbossa, F. (2016). The integrated assembly line balancing and parts feeding problem with ergonomics considerations. IFAC-Papers OnLine 49 (12), 191–96. Doi : http://dx.doi.org/10.1016/ j.ifacol.2016.07.594.
  • Battini, D., Delorme, X. & Dolgui, A. (2016). Ergonomics in assembly line balancing based on energy expenditure: a multi-objective model. International Journal of Production Research 54(3), 824–45. Doi : http://dx.doi.org/10.1080/ 00207543.2015.1074299.
  • Bautista, J., Rocío, A. & Batalla-García, C. (2016). Maximizing comfort in assembly lines with temporal, spatial and ergonomic attributes. International Journal of Computational Intelligence Systems 9 (4), 788–99. Doi : http://dx.doi.org/10.1080/18756891.2016.1204125.
  • Bautista, J., Batalla-García, C. & Alfaro-Pozo, R. (2016). Models for assembly line balancing by temporal, spatial and ergonomic risk attributes. European Journal of Operational Research, 251(3), 814–29. Doi : http://dx.doi.org/10.1016/ j.ejor.2015.12.042.
  • Baykasoğlu, A , Demi̇rkol Akyol, Ş . (2014). Ergonomik montaj hatti dengeleme. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 29 (4), Doi : https://doi.org/10.17341/ gummfd.00296
  • Baykasoglu, A., Tasan, S., Tasan, A. & Akyol, S. (2017). Modeling and solving assembly line design problems by considering human factors with a real-life application. Human Factors and Ergonomics In Manufacturing 27 (2), 96–115. Doi : https://doi.org/10.1002/hfm.20695.
  • Becker, C. & Armin, S. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research 168 (3), 694–715. Doi : https://doi.org/ 10.1016/j.ejor.2004.07.02.
  • Becker, D., Battaïa, O., Cegarra, J. & Lazarev, A. (2018b). Work planning in low-volume assembly lines under ergonomic constraints. Procedia CIRP 72, 786–89. Doi : https://doi.org/10.1016/ j.procir. 2018.03.019.
  • Boenzi, F., Digiesi S., Mossa, G., Mummolo, G. & Romano, V. (2013). Optimal break and job rotation schedules of high repetitive - low load manual tasks in assembly lines: an ocra - based approach. IFAC Proceedings Volumes 46 (9), 1896-1901. Doi : http://dx.doi.org/10.3182/ 20130619-3-RU-3018.00625.
  • Bortolini, M., Maurizio, F., Mauro, G., & Francesco, P.(2017). Multi-objective assembly line balancing considering component picking and ergonomic risk. Computers and Industrial Engineering, 112, 348–67. Doi : http://dx.doi.org/ 10.1016/j.cie.2017.08.029.
  • Carnahan, Brian J., Norman, Bryan A. & Redfern, Mark S. (2001). Incorporating physical demand criteria into assembly line balancing. IIE Transactions (Institute of Industrial Engineers) 33 (10), 875–887. Doi : https://doi.org/ 10.1023/A:1010926722609
  • Chankong, V. & Haimes, Y.Y. (1983). Multiobjective decision making: theory and methodology. Elsevier Science Publishing Co, New York.
  • Cheshmehgaz, H.R., Haron, H., Kazemipour, F. & Desa, M.I. (2012). Accumulated risk of body postures in assembly line balancing problem and modeling through a multi-criteria fuzzy-genetic algorithm. Computers & Industrial Engineering, 63 (2), 503-512, Doi : https://doi.org/10.1016/ j.cie.2012.03.017.
  • Choi, G. (2009). A goal programming mixed-model line balancing for processing time and physical workload. Computers and Industrial Engineering 57 (1), 395–400. http://dx.doi.org/10.1016/ j.cie.2009.01.001.
  • Colombini, D., & Occhipinti, E. (2006). Preventing upper limb work-related musculoskeletal disorders (UL-WMSDS): new approaches in job (re)design and current trends in standardization. Applied ergonomics, 37(4), 441–450. Doi : https://doi.org/10.1016/j.apergo. 2006.04.008.
  • Di Benedetto, R., & Fanti, M. (2012). An integrated tool to support engineers for WMSDs risk assessment during the assembly line balancing. Work(Reading, Mass.), 41 (1), 2329–2333. Doi : https://doi.org/10.3233/WOR-2012-0460-2329
  • EASHW (European Agency for Safety and Health at Work). (2012). Promoting active ageing in the workplace.
  • Gasimov R.N. (2001) Characterization of the Benson Proper Efficiency and Scalarization in Nonconvex Vector Optimization. In: Köksalan M., Zionts S. (eds) Multiple Criteria Decision Making in the New Millennium. Lecture Notes in Economics and Mathematical Systems. 507. Springer, Berlin, Heidelberg. Doi : https://doi.org/10.1007/978-3-642-56680-6_17.
  • Güner, B, Hasgül, S . (2013). Sürdürülebilir denge için ergonomik faktörleri içeren u-tipi montaj hatti dengelemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27 (2) , Erişim adresi :https://dergipark.org.tr/tr/pub/gazimmfd/issue/ 6692/88655
  • Hignett, S., & McAtamney, L. (2000). Rapid entire body assessment (REBA). Applied ergonomics, 31(2), 201–205. Doi : https://doi.org/ 10.1016/s0003-6870(99) 00039-3
  • Jaturanonda, C., Nanthavanij, S. & Das, S.K. (2013). Heuristic procedure for the assembly line balancing problem with postural load smoothness. International Journal of Occupational Safety and Ergonomics, 19 (4), 531-541, Doi : https://doi.org/10.1080/10803548. 2013.11077017.
  • Kahya, E , Şahi̇n, B , Daşdelen, E , Doğru, S . (2018). Ergonomik risk kisitlari altinda yeni bir montaj hatti dengeleme modeli geliştirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, Özel Sayı: ERGONOMİ 2017 , 49-57 . Doi : https://doi.org/ 10.21923/jesd.363560.
  • Kara, Y., Atasagun, Y., Gökçen, H., Hezer, S. & Demirel, N. (2014) An integrated model to incorporate ergonomics and resource restrictions into assembly line balancing, International Journal of Computer Integrated Manufacturing, 27 (11), 997-1007, Doi : https://doi.org/10.1080/0951192X.2013.874575.
  • Otto , A. & Battaïa, O. (2017). Reducing physical ergonomic risks at assembly lines by line balancing and job rotation: a survey. Computers and Industrial Engineering 111, 467–80. Doi : http://dx.doi.org/10.1016/j.cie.2017.04.011.
  • Otto, A., & Scholl, A. (2011). Incorporating ergonomic risks into assembly line balancing, European Journal of Operational Research 212 (2), 277–86. Doi : http://dx.doi.org/10.1016/ j.ejor. 2011.01.056.
  • Özgörmüş E. (2007). Ergonomik Koşullar Altında Montaj Hattı Dengeleme. (Yüksek Lisans Tezi). Endüstri Mühendisliği Anabilim Dalı, Pamukkale Üniversitesi, Denizli.
  • Bautista, J., Alfaro-pozo, R. & Batalla, C. (2016). Advances in artificial hands. The Sciences 5 (10), 9–12.
  • Rajabalipour, C., Haron, H., Kazemipour, F. & Desa, M. (2012). Accumulated risk of body postures in assembly line balancing problem and modeling through a multi-criteria fuzzy-genetic algorithm. Computers and Industrial Engineering 63 (2), 503–12. Doi : http://dx.doi.org/10.1016/ j.cie.2012.03.017.
  • Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6, 18–25.
  • Schneider, E., & Irastorza, X. (2010). Work-Related Musculoskeletal Disorders in the EU. European Agency for Safety and Health at Work, Luxembourg: Publications Office of the European Union.
  • Şahin, B. Kahya, E. (2018). Hedef programlama modeli ile ergonomik kisitlar altinda montaj hatti dengelemesi. Mühendislik Bilimleri ve Tasarım Dergisi,Özel Sayı: Ergonomi 2017 , 188-196 . Doi : http://dx.doi.org/10.21923/ jesd.358709.
  • Takanokura, M., Tanaka, T., Watanebe I., Kakehi, I., Utsuki, H. & Nakamura, M. (2017). Posture-Based risk assessment for improvement of physical workload: case study for an assembly line. Journal of Japan Industrial Management Association 67 (4), 338–47.
  • Xu, Z., Jeonghan K., Cochran, D. & Jung, M. (2012). Design of assembly lines with the concurrent consideration of productivity and upper extremity musculoskeletal disorders using linear models. Computers and Industrial Engineering 62 (2), 431–441. Doi : http://dx.doi.org/10.1016/ j.cie.2011.10.008.
  • Zhang, Z., Tang, Q., Ruiz, R. & Zhang, L. (2020). Ergonomic risk and cycle time minimization for the U-shaped worker assignment assembly line balancing problem: a multi-objective approach.Computers and Operations Research 118. Doi : http://dx.doi.org/10.1016/j.cor. 2020.104905.