İKİ AMAÇLI TESİS YERLEŞİMİ PROBLEMİ İÇİN BİR YİNELEMELİ YEREL ARAMA ALGORİTMASI

Tesis yerleşimi, modern üretim sistemlerinde karşılaşılan en önemli sorunlardan biridir. Bu çalışmada hem nicel hem de nitel hedeflerin birleştirildiği iki amaçlı bir tesis yerleşimi problemi (İA-TYP) ele alınmaktadır. Burada nicel amaç toplam malzeme taşıma maliyetinin en aza indirgenmesidir. Nitel amacımız ise toplam yakınlık derecelendirme puanlarının maksimize edilmesidir. Problemi çözmek için Değişken Komşuluklu İniş (DKİ) algoritmasının bir saptırma mekanizması ile birleştirildiği bir Yinelemeli Yerel Arama (YYA) algoritması önerilmiştir. Önerilen algoritmanın performansı önceki çalışmalarda sunulan çözüm algoritmalarının elde ettikleri çözümler baz alınarak değerlendirilmiştir. Hesaplama sonuçları, önerilen algoritmanın İA-TYP örneklerine yüksek kaliteli çözümler üretebildiğini göstermektedir.

___

  • Avci, M., & Topaloglu, S. (2017). A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem. Computers & Operations Research, 83, 54-65. Doi: https://doi.org/10.1016/j.cor.2017.02.004
  • Brandão, J. (2020). A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem. European Journal of Operational Research, 284(2), 559-571. Doi: https://doi.org/10.1016/j.ejor.2020.01.008
  • Chen, C. W., & Sha, D. Y. (1999). A design approach to the multi-objective facility layout problem. International Journal of Production Research, 37(5), 1175-1196. Doi: https://doi.org/10.1080/002075499191463
  • Chen, C. W., & Sha, D. Y. (2005). Heuristic approach for solving the multi-objective facility layout problem. International Journal of Production Research, 43(21), 4493-4507. Doi: https://doi.org/10.1080/00207540500056383
  • Dong, X., Chen, P., Huang, H., & Nowak, M. (2013). A multi-restart iterated local search algorithm for the permutation flow shop problem minimizing total flow time. Computers & Operations Research, 40(2), 627-632. Doi: https://doi.org/10.1016/j.cor.2012.08.021
  • Dutta, K. N., & Sahu, S. (1982). A multigoal heuristic for facilities design problems: MUGHAL. Internatıonal Journal of Productıon Research, 20(2), 147-154. Doi: https://doi.org/10.1080/00207548208947756
  • Fortenberry, J. C., & Cox, J. F. (1985). Multiple criteria approach to the facilities layout problem. International Journal of Production Research, 23(4), 773-782. Doi: https://doi.org/10.1080/00207548508904746
  • Harmonosky, C. M., & Tothero, G. K. (1992). A multi-factor plant layout methodology, International Journal of Production Research, 30(8), 1773-1789. Doi: https://doi.org/10.1080/00207549208948121
  • Hosseini-Nasab, H., Fereidouni, S., Ghomi, S. M. T. F., & Fakhrzad, M. B. (2018). Classification of facility layout problems: a review study. The International Journal of Advanced Manufacturing Technology, 94(1), 957-977. Erişim adresi: https://link.springer.com/article/10.1007/s00170-017-0895-8
  • Khare, V. K., Khare, M. K., & Neema, M. L. (1988). Combined computer-aided approach for the facilities design problem and estimation of the distribution parameter in the case of multigoal optimization. Computers & Industrial Engineering, 14(4), 465-476. Doi: https://doi.org/10.1016/0360-8352(88)90048-4
  • Lourenço, H. R., Martin, O. C., & Stützle, T. (2019). Iterated Local Search: Framework and Applications. Handbook of Metaheuristics, 129-168. Erişim adresi: https://link.springer.com/chapter/10.1007/978-3-319-91086-4_5
  • Malakooti, B., & Tsurushıma, A. (1989). An expert system using priorities for solving multiple-criteria facility layout problems. Internatıonal Journal of Productıon Research, 27(5), 793-808. Doi: https://doi.org/10.1080/00207548908942588
  • Matai, R., Singh, S. P., & Mittal, M. L. (2013). Modified simulated annealing based approach for multi objective facility layout problem. International Journal of Production Research, 51(14), 4273-4288. Doi: https://doi.org/10.1080/00207543.2013.765078
  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097-1100. Doi: https://doi.org/10.1016/S0305-0548(97)00031-2
  • Michallet, J., Prins, C., Amodeo, L., Yalaoui, F., & Vitry, G. (2014). Multi-start iterated local search for the periodic vehicle routing problem with time windows and time spread constraints on services. Computers & Operations research, 41, 196-207. Doi: https://doi.org/10.1016/j.cor.2013.07.025
  • Mohamadi, A., Ebrahimnejad, S., & Tavakkoli-Moghaddam, R. (2018). A novel two-stage approach for solving a bi-objective facility layout problem. International Journal of Operational Research, 31(1), 49-87. Doi: https://doi.org/10.1504/IJOR.2018.088557
  • Penna, P. H. V., Subramanian, A., & Ochi, L. S. (2013). An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, 19(2), 201-232. Erişim adresi: https://link.springer.com/article/10.1007/s10732-011-9186-y
  • Rosenblatt, M. J. (1979). The facilities layout problem: a multi-goal approach. International Journal of Production Research, 17(4), 323-332. Doi: https://doi.org/10.1080/00207547908919617
  • Sahni, S., & Gonzalez, T. (1976). P-complete approximation problems. Journal of the ACM (JACM), 23(3), 555-565. Doi: https://doi.org/10.1145/321958.321975
  • Sha, D. Y., & Chen, C. W. (2001). A new approach to the multiple objective facility layout problem. Integrated Manufacturing Systems, 12(1), 59-66. Doi: https://doi.org/10.1108/09576060110361546
  • Shojaie, A. A., & Bariran, S. E. S. (2020). Comparison of two modified meta-heuristic soft algorithms for solving a bi-objective facility layout problem. International Journal of Mathematics in Operational Research, 16(3), 435-454. Doi: https://doi.org/10.1504/IJMOR.2020.106928
  • Singh, S. P., & Sharma, R. R. (2006). A review of different approaches to the facility layout problems. The International Journal of Advanced Manufacturing Technology, 30(5-6), 425-433. Erişim adresi: https://link.springer.com/article/10.1007/s00170-005-0087-9
  • Stützle, T. (2006). Iterated local search for the quadratic assignment problem. European Journal of Operational Research, 174(3), 1519-1539. Doi: https://doi.org/10.1016/j.ejor.2005.01.066
  • Subramanian, A., Drummond, L. M. D. A., Bentes, C., Ochi, L. S., & Farias, R. (2010). A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery. Computers & Operations Research, 37(11), 1899-1911. Doi: https://doi.org/10.1016/j.cor.2009.10.011
  • Suresh, G., & Sahu, S. (1993). Multiobjective facility layout using simulated annealing. International Journal of Production Economics, 32(2), 239-254. Doi: https://doi.org/10.1016/0925-5273(93)90071-R
  • Şahin, R. (2011). A simulated annealing algorithm for solving the bi-objective facility layout problem. Expert Systems with Applications, 38(4), 4460-4465. Doi: https://doi.org/10.1016/j.eswa.2010.09.117
  • Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. John Wiley & Sons. Erişim adresi: https://books.google.com.tr/books?id=-xBIq6Qm2SQC&lpg=PA2&ots=sD0AicFlY5&dq=facilities%20planning%20tompkins&lr&hl=tr&pg=PA2#v=onepage&q=facilities%20planning%20tompkins&f=false Urban, T. L. (1989). Combining qualitative and quantitative analyses in facility layout. Production and Inventory Management, 30(3), 73-77. Erişim adresi: https://search.proquest.com/docview/199910723?pq-origsite=gscholar&fromopenview=true
  • Zohali, H., Naderi, B., Mohammadi, M., & Roshanaei, V. (2019). Reformulation, linearization, and a hybrid iterated local search algorithm for economic lot-sizing and sequencing in hybrid flow shop problems. Computers & Operations Research, 104, 127-138. Doi: https://doi.org/10.1016/j.cor.2018.12.008