Toyota CH-R SUV Kapı Paneli Üretiminde Ağırlığı ve Enjeksiyon Kalıplama Çevrim Süresini Azaltmada Polipropilen Köpük Kullanımı

Son yıllarda doğal hammadde kaynaklarının tüketilmesi sonucu hammadde maliyetlerindeki artış ve çevre bilincinin oluşması ile ucuz ve daha az hammadde kullanımını teşvik eden yeni teknolojiler otomotiv endüstrisinde ön plana çıkmaktadır. Bu çalışmada Toyota CH-R model arabanın kapı paneli üretiminde köpük kullanılarak kapı panelinin hafifletilmesi ve enjeksiyon çevrim süresinin kısaltılması amaçlanmıştır. Silindir orta sıcaklığı, enjeksiyon hızı, enjeksiyon geri basıncı, tutma basıncı ve tutma süresi gibi enjeksiyon parametreleri üzerinde değişiklikler yapılmıştır. Polipropilen (PP) matrise ağırlıkça %1, %1,5 ve %2 oranında kimyasal köpük ajanı (KKA) ilave edilmiştir. Köpük ajanı kullanımı sonucu ağırlıkta yaklaşık olarak %4 hafiflik ve enjeksiyon çevrim süresinde ise 5,5 s düşüş sağlanmıştır. Aynı zamanda hücre morfolojilerinin, mekanik özellikler ve numune ağırlıkları; proses parametreleri ile ağırlıkça CFA oranındaki değişime bağlı olarak farklılık gösterdiği gözlenmiştir.

Using Foamed Polypropylene to Reduce Weight and Injection Molding Cycle Time in Toyota CH-R SUV Door Panel Production

In recent years, new technologies that encourage the use of cheaper and less raw materials have emerged in the automotive industry, with the increase in raw material costs as a result of the consumption of natural raw material resources and the occurrence of environmental problems. In this study, it was aimed to lighten the door panel and reduce the injection cycle time by using foam in the door panel production of Toyota CH-R model car. Injection parameters such as barrel temperature, injection speed, injection back pressure, holding pressure and holding time were changed. 1%, 1.5% and 2% by weight chemical foaming agent (CFA) was added to the polypropylene (PP) matrix. Approximately 4% lightening and 5.5 sec/shot injection cycle time reduction was achieved with the use of foaming agents. In addition, it was observed that cell morphologies, mechanical properties and sample weights changed due to changes in parameters and CFA ratio by weight.

___

  • [1]. Lee S.T., Park C.B., Ramesh N.S., “Introduction to polymeric foams, Polymeric Foams, Science and Technology”, 2007, 1-21.
  • [2]. Sayer S., Yalcin Melikoglu A., “The use of microcellular foam technology in the production of thermoplastic parts”, Engineer and Mechanic, 2016, vol. 57 no. 678, 53-59.
  • [3]. Wang G., Zhao J., G. Wang, Zhao H., Lin J., Zhao G., Park C.B., “Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding”, Chemical Engineering Journal, 2020, vol. 390, 124520.
  • [4]. Iliev R.P., “Processing of fine-cell polypropylene foams in compounding-based rotational foam molding”, University of Toronto, Mechanical and Industrial Engineering Department, Master Thesis, 1999.
  • [5]. Yetgin S.H., “Production and characterization of polymer foam materials for the automotive industry”, Sakarya University, Institute of Science, Metal Education Department, PhD Thesis, 2012.
  • [6]. Liu P.S., Chen G.F., “Producing polymer foams, Processing and Applications”, Porous Materials, 2014, Chapter 7, 345–382.
  • [7]. Han C.D., Yoo H.J., “Studies on structural foam processing. IV. bubble growth during mold filling”, Polymer Engineering and Science, 1981, vol. 21, 518-533.
  • [8]. Yetgin S.H., Unal H., Mimaroglu, A. Findik F., “Influence of process parameters on the mechanical and foaming properties of PP polymer and PP/talc/epdm composites”, Polymer-Plastics Technology and Engineering, 2013, vol. 52, 433–439.
  • [9]. Shaayegan V., Wang G., Park C.B., “Study of the bubble nucleation and growth mechanisms in high-pressure foam injection molding through in-situ visualization”, European Polymer Journal, 2016, vol. 76, 2–13.
  • [10]. Wang J., Chen D., “Flexural properties and morphology of microcellular-insert injection molded all-polypropylene composite foams”, Composite Structures, 2018, vol. 187, 403–410.
  • [11]. Bledzki A.K., Faruk O., “Microcellular injection molded wood fiber– PP composites: part I–effect of chemical foaming agent content on cell morphology and physico-mechanical properties”, Journal of Cellular Plastics, 2006, vol. 42, 63-76.
  • [12]. Demirci U., “Optimization of distortion and cycle time in plastic injection molding of polypropylene containing foaming agent”, Yildiz Technical University, Institute of Science, Mechanical Engineering Department, Manufacturing Methods Program, Master Thesis, 2019.
  • [13]. ISO 180, “Standard test method for Izod notched impact strength of plastics, International Standard”, 2000.
  • [14].Villamizar C.A., Han C.D., “Studies on structural foam processing II. bubble dynamics in foam injection molding”, Polymer Engineering and Science, 1978, vol. 18, 699-710.
  • [15].N.N. Najib, Z.M. Ariff, N.A. Manan, A.A. Bakar, C.S. Sipaut, “Effect of blowing agent concentration on cell morphology and impact properties of natural rubber foam”, Journal of Physical Science, vol. 20, no. 1, pp. 13–25, 2009.
  • [16].Chang E., Mahmud M.B., Li X., Mohebbi A., Park C.B., “Optimizing chemical blowing agent content in foam injection molding process of polypropylene”, Antec Anaheim, 2017, 1571-1574.
  • [17]. Babaei I., Madanipour M., Farsi M., Farajpoor A., “Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite”, Composites: Part B, 2014, vol. 56, 163–170.
  • [18].Lee J.J., Cha S.W., “Characteristics of the skin layers of microcellular injection molded parts”, Polymer-Plastics Technology and Engineering, 2006, vol. 45, 871–877.
  • [19].Unal H., Yetgin S.H., “Investigation of the Effect of Process Conditions on the Mechanical Properties and Cell Morphology of Polypropylene Foam Material”, 6th International Advanced Technologies Symposium (IATS’11), Elazig, Turkey, 201-207, 2011.
  • [20].Yetgin S.H., Unal H., Mimaroglu A., “Usability of injection moulded polypropylene and talc-epdm filled PP composite foam materials in automotive industry”, International Journal of Vehicle Design, 2016, 364-376.
  • [21]. Xu J., Kishbaugh L., “Simple modelling of the mechanical properties with part weight reduction for microcellular foam plastic”, Journal of Cellular Plastics, 2003, vol. 39, 29–47.
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği