Farklı Tane Boyutuna Sahip Afşin-Elbistan Uçucu Külünün Geopolimer Hammaddesi Olarak Kullanımı

İki farklı tane boyutuna sahip yüksek oranda kalsiyum oksit içeren Afşin – Elbistan uçucu külü içeren geopolimer harçların üretilmesinde hammadde olarak değerlendirilmesi amaçlanmıştır. Bu harç karışımlarının tasarımında aktivatör/bağlayıcı oranı 0,55 su/bağlayıcı oranı 0,50 ve kum/bağlayıcı oranı 0,30 olarak sabit tutulmuştur. Aktifleştirici olarak sodyum silikat (SS) ve sodyum hidroksit (SH) beraber kullanılmıştır. SS/SH oranı 1 ve 1,5, sodyum hidroksitin molaritesi 10 ve 14 M ve kür sıcaklığı ise 24 saat boyunca 60 ºC ve 90 ºC sıcaklık seçilmiştir. Bu numunelerin yayılma, taze ve sertleşmiş birim ağırlık, ultrasonik geçiş hızı ve basınç dayanımı özellikleri incelenmiştir. Ayrıca mikroyapıda meydana gelen değişiklikler, termogravimetrik analizi (TGA) ve X-ışını kırınım analizi (XRD) ile araştırılmıştır. En yüksek basınç dayanımı 14GF0,55/1,5-90 (14M SH, öğütülmüş uçucu kül, aktivatör/bağlayıcı oranı 0,55, SS/SH oranı 1,5 ve 90 ºC kür sıcaklığı) numunesi vermiş ve bu değer 10,30 MPa’dır. Molaritenin 10'dan 14'e ve SS/SH'nin 1'den 1,5'e yükselmesi, geopolimerizasyon reaksiyonlarındaki artıştan dolayı mekanik özellikleri de artmıştır. Ayrıca daha yoğun yapı nedeniyle UPV sonuçları da artmıştır. Bu sonuçlar aynı zamanda XRD ve TGA analizleri ile de desteklenmektedir.

The Effect of Afşin-Elbistan Fly Ash with Different Particle Size As Geopolymer Raw Material

It is aimed to be used as a raw material in the production of geopolymer mortars containing Afşin - Elbistan fly ash with a high rate of calcium oxide in two different grain sizes. In the design of these mortar mixtures, the activator/binder ratio was kept constant as 0.55, the water/binder ratio as 0.50 and the sand/ binder ratio as 0.30. Sodium silicate (SS) and sodium hydroxide (SH) were used together as activators. SS/SH ratio is 1 and 1.5, the molarity of sodium hydroxide is 10 and 14 M, and the curing temperature is 60 ºC and 90 ºC for 24 hours. The fresh and hardened unit weight, ultrasonic velocity and compressive strength properties of these samples were investigated. In addition, changes in the microstructure were investigated by thermogravimetric analysis and X-ray diffraction analysis. The highest compressive strength 14GF0.55/1.5-90 (14M SH, use of ground fly ash, activator/binder ratio 0.55, SS/SH ratio 1.5 and 90 ºC curing temperature) was given and this value was 10.30 MPa. The increase in the molarity from 10 to 14 and the SS / SH from 1 to 1.5 increased the mechanical properties due to the increase in geopolymerization reactions. Also, the UPV results have increased due to the denser structure. These results are also supported by XRD and TGA analysis.

___

  • Kantarcı, F., Türkmen, İ., Ekinci, E., “Optimization of Production Parameters of Geopolymer Mortar and Concrete: A Comprehensive Experimental Study”, Construction and Building Materials, 2019, 228; 116770.
  • Yaşar, B.A., Köse, M.M., Avğın, S., Temiz, H., “Düşük Dayanımlı Betonların Elastisite Modülünün Bulunması”, El-Cezerî Fen ve Mühendislik Dergisi, 2020, 7 (3); 1384-1397.
  • Saka, R.C., Gökdemir, A., Subaşı, S., “Sepiyolit İkameli Çimentolu Karışımların Mekanik ve Fiziksel Özelliklerinin İncelenmesi”, El-Cezerî Fen ve Mühendislik Dergisi 2018, 5(2); 681-692.
  • Özdemir, İ., Koçak, Y., “Pirinç Kabuğu Külü İkameli Çimentoların Fiziksel Ve Mekanik Özelliklerinin Araştırılması”, El-Cezerî Fen ve Mühendislik Dergisi 2020, 7(1); 160-168.
  • Toniolo, N., Boccaccini, A. R.,” Fly Ash-Based Geopolymers Containing Added Silicate Waste. A Review”, Ceramics International, 2017, 43(17); 14545–14551.
  • Topçu, İ. B., Sofuoğlu, T., “Pres Filtre Atığı ve Uçucu Kül ile Elde Edilen Geopolimer Harçların Farklı Koşullar Altında Birim Ağırlığı ve Basınç Dayanımının Değerlendirilmesi”, El-Cezerî Fen ve Mühendislik Dergisi 2020, 7 (2); 806-823.
  • Liew, K. M., Sojobi, A. O., Zhang, L. W., “Green Concrete: Prospects and Challenges”, Construction and Building Materials, 2017, 156; 1063–1095.
  • Meesala, C. R., Verma, N. K., Kumar, S., “Critical Review On Fly‐Ash Based Geopolymer Concrete”, Structural Concrete, 2019, 1–16.
  • Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V., “Workability and Strength of Coarse High Calcium Fly Ash Geopolymer”, Cement and Concrete Composites, 2017, 29(3); 224–229.
  • Davidovits, J., “Geopolymer Chemistry and Application”, 2nd Ed., Institute Geopolymer, Saint-Quentin, France, 585s, 2008.
  • Khale D., Chaudhary R., “Mechanism of Geopolymerization and Factors Influencing its Development: A Review”, Journal of Materials Science, 2007, 42; 729–746.
  • Chindaprasirt, P., Chareerat, T., Hatanaka, S., Cao, T., “High-Strength Geopolymer Using Fine High-Calcium Fly Ash”, Journal of Materials in Civil Engineering, 2011, 23(3); 264–270.
  • Siddique, R, “Performance Characteristics of High-Volume Class F Fly Ash Concrete”, Cement and Concrete Research, 2004, 34; 487–493.
  • Siddique, R., Khatib, J.M., “Abrasion Resistance and Mechanical Properties of High-Volume Fly Ash Concrete”, Materials and Structures, 2010; 43; 709–718.
  • Chindaprasirt, P., De Silva, P., Sagoe-Crentsil, K., Hanjitsuwan, S., “Effect of SiO2 and Al2O3 on the Setting and Hardening of High Calcium Fly Ash-Based Geopolymer Systems”, Journal of Materials Science, 2012, 47(12); 4876–4883.
  • Peker, S.N., ”Lignite-fired Thermal Power Plants and SO2 Pollution in Turkey”, Energy Policy, 2006, 34; 2690–2701. Mahyar, M., Erdoğan, S.T., “Phosphate-activated High-Calcium Fly Ash Acid-Base Cements, Cement Concrete Composite”, 2015, 96–103.
  • Türker, P., Erdoğan, B., Kantaş, F., Yeğinobalı, A., “Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri”, Türkiye Çimento Müstahsilleri Birliği, 112s. 2009.
  • ASTM C618-17a, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA, 2017.
  • EN 197-1, Cement – Part 1: Composition, specifications and conformity criteria for common cements, European Committee for Standardization, Brussels, Belgium, 2011.
  • EN 450-1, Fly ash for concrete- Part 1: Definition, specification and conformity criteria, European Committee for Standardization, Brussels, Belgium, 2012.
  • Demi̇r Şahi̇n, D, Çullu, M, Eker, H., “Betonların Aşındırma ve Karbonatlaşma Performanslarına Kireçsi Uçucu Küllerin Farklı İncelik ve İkame Oranlarının Etkisi”, Avrupa Bilim ve Teknoloji Dergisi, 2019, 17; 1150-1163.
  • Binici, H., Görür, E. B., Durgun, M. Y., “Afşin-Elbistan Uçucu Külü ve Tekstil Fabrikaları Atık Küllerinin Betonda Puzolanik Katkı Olarak Kullanılması”, KSÜ Mühendislik Bilimleri Dergisi, 2009, 12(1); 10-19.
  • Ati̇ş, C , Karahan, O , Bi̇li̇m, C , Özcan, F , Sevi̇m, U., “Sodyum Sülfat İle Aktifleştirilen Uçucu Kül Katkılı Harçların Özellikleri”, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2016, 5(2); 117-123.
  • Top, S., Vapur, H., “Artık Malzemelerden Box Behnken Test Dizaynı Kullanılarak Hafif Geopolimer Beton Üretimi”, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 2020, 11(2); 689-700.
  • Sevinç, A. H., Durgun, M. Y., “Properties of High-Calcium Fly Ash-Based Geopolymer Concretes Improved with High-Silica Sources”, Construction and Building Materials, 2020, 261; 120014.
  • TS EN 1008, Beton Karma Suyu- Numune Alma, Deneyler ve Beton Endüstrisindeki İşlemlerden Geri Kazanılan Su Dahil, Suyun, Beton Karma Suyu Olarak Uygunluğunun Tayini Kuralları, Türk Standartları Enstitüsü, Ankara, 2003.
  • Rangan, B.V., “Design and Manufacture of Fly Ash-Based Geopolymer Concrete”, Concrete Australia, 2008, 34 (2); 37–43.
  • ASTM C 597-16, Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, 2016.
  • TS EN 12390-3, Sertleşmiş Beton Deneyleri – Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini, Ankara, 2010.
  • Kaya, M., “Yüksek ve Düşük Kalsiyum İçeren Uçucu Küller ile Üretilen Geopolimer Harçların Fiziksel ve Mekanik Özelliklerinin İncelenmesi”, Türk Doğa ve Fen Dergisi, 2020, 9(2); 96-104
  • Assi, L. N., Eddie Deaver, E., & Ziehl, P., ”Effect of Source And Particle Size Distribution on The Mechanical and Microstructural Properties of Fly Ash-Based Geopolymer Concrete”, Construction and Building Materials, 2018, 167(2; 372–380.
  • Benaicha, M., Jalbaud, O., Alaoui, A. H., Burtschell, Y., “Correlation Between the Mechanical Behavior and The Ultrasonic Velocity of Fiber-Reinforced Concrete”, Construction and Building Materials, 2015, 101; 702–709.
  • Ibnul Bashar, I., Alengaram, U. J., Jumaat, M. Z., Islam, A., “The Effect of Variation of Molarity of Alkali Activator and Fine Aggregate Content on the Compressive Strength of The Fly Ash: Palm Oil Fuel Ash Based Geopolymer Mortar”, Advances in Materials Science and Engineering, 2014, 245473; 1–13.
  • Kovalchuk, G., Fernandez-Jimenez, A., Palomo A., “Alkali Activated Fly Ash: Effect of Thermal Curing Conditions on Mechanical and Microstructural Development – Part II”, Fuel, 2007, 83(3), 315–322.
  • Hardjito, D., Cheak, C. C., & Lee Ing, C. H., “Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar”, Modern Applied Science, 2008, 2(4); 3–11.
  • Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., Chindaprasirt, P., “Naoh-Activated Ground Fly Ash Geopolymer Cured At Ambient Temperature”, Fuel, 2011, 90(6); 2118–2124.
  • Naghizadeh, A., Ekolu, S.O., Effect of Mix Parameters on Strength of Geopolymer Mortars – Experimental Study, Sixth International Conference on Durability of Concrete Structures, Leeds, UK, 2018, 315–320.
  • Gomaa, E., Sargon, S., Kashosi, C., El Gawady, M., Fresh Properties and Early Compressive Strength of Alkali-Activated High Calcium Fly Ash Paste. Proceedings of the 4th Congres International de Geotechnique – Ouvrages – Structures, Lecture Notes in Civil Engineering, 2018, 8, 497–507.
  • Atiş, C. D., Görür, E. B., Karahan, O., Bilim, C., İlkentapar, S., Luga, E., “Very High Strength (120 MPa) Class F Fly Ash Geopolymer Mortar Activated At Different Naoh Amount, Heat Curing Temperature And Heat Curing Duration”, Construction and Building Materials, 2015, 96; 673–678.
  • Garcia-Lodeiro, I., Palomo, A., Fernandez-Jimenez, A., Macphee, D. E., “Compatibility Studies Between N-A-S-H and C-A-S-H Gels: Study in The Ternary Diagram Na2O-CaO-Al2O3-SiO2-H2O”, Cement and Concrete Research, 2011,41(9); 923-931.
  • Lecomte, I., Henrist, C., Liégeois, M., Maseri, F., Rulmont, A., Cloots, R., “(Micro)-Structural Comparison between Geopolymers, Alkali-Activated Slag Cement And Portland Cement”, Journal of the European Ceramic Society, 2006, 26(16); 3789–3797.
  • Pardal, X., Pochard, I., Nonat, A., “Experimental Study of Si–Al Substitution in Calcium-Silicate-Hydrate (C-S-H) Prepared Under Equilibrium Conditions”, Cement and Concrete Research, 2009, 39(8); 637–643.
  • He, R., Dai, N., Wang, Z., “Thermal and Mechanical Properties of Geopolymers Exposed to High Temperature: A Literature Review”, Advances in Civil Engineering, 2020; 1–17.
  • Duxson, P., Lukey, G. C., van Deventer, J. S. J., “Physical Evolution of Na-Geopolymer Derived From Metakaolin up to 1000°C” , Journal of Materials Science, 2007, 42(9); 3044–3054.
  • Nath, S. K., Kumar, S., “Role of Particle Fineness on Engineering Properties and Microstructure of Fly Ash Derived Geopolymer”, Construction and Building Materials, 2020, 233; 117294.
  • Rakhimova, N. R., Rakhimov, R. Z., Morozov, V. P., Gaifullin, A. R., Potapova, L. I., Gubaidullina, A. M., Osin, Y. N., “Marl-based Geopolymers Incorporated with Limestone: A Feasibility Study”, Journal of Non-Crystalline Solids, 2018, 492; 1–10.
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği