Tornalama İşleminde Kesme kuvveti ve Talaş Oluşumu Üzerinde Kesme Parametrelerinin Etkisinin Deneysel ve Nümerik Analizi

Bu çalışmada, kaplamasız kesici takımlar kullanılarak Inconel 625 süperalaşımının tornalanmasında oluşan esas kesme kuvveti (Fc) üzerinde kesme parametrelerinin etkisi deneysel ve nümerik analizler ile değerlendirilmiştir. Tornalama deneyleri, beş farklı kesme hızında (60, 90, 120, 150 ve 180 m/dak), üç farklı ilerleme miktarında (0,12 0,18 ve 0,24 mm/dev) ve üç farklı talaş derinliğinde (0,5 1 ve 1,5 mm) kuru kesme şartlarında CNC torna tezgahında gerçekleştirilmiştir. Esas Kesme kuvvetinin (Fc) ölçülmesinde, Kistler 9257B tipi dinanometre ve ekipmanları kullanılmıştır. Esas kesme kuvvetinin (Fc) sonlu eleman yöntemiyle modellemesi Deform 3D yazılımı kullanılarak yapılmıştır. Deneysel ve nümerik analiz sonuçları karşılaştırıldığında, deneysel olarak ölçülen Fc değerleri ile nümerik analizler sonucu elde edile Fc değerleri arasında yaklaşık olarak %12 oranında bir sapma tespit edilmiştir.

Experimental and Numerical Analysis of the Effect of Cutting Parameters on Cutting Force and Chip Formation in Turning Process

In this study, the influences of cutting parameters on the main cutting force (Fc) and the chip morphology in turning of the Inconel 625 superalloy by using uncoated cutting tools are evaluated by experimental and numerical analysis. The turning tests were performed without coolant on a CNC lathe at five different cutting speeds (60, 90, 120 and 180 m/min), three different feed rates (0.12 0.18 and 0.24 mm/rev) and three different depth of cut (0.5 1 and 1.5 mm). Kistler 9257B type dynamometer and equipment’s were used to measure the main cutting force (Fc). Finite element modelling of the cutting forces have been performed using Deform 3D software. Comparing experimental and numerical analysis results, it was found that there is a deviation of approximately 12% between the experimental and numerical results of the main cutting force (Fc).

___

  • [1] Trent E. M., “Metal Cutting”, Butterworths Press, London, 1-171 (1989).
  • [2] Black P. H., “Theory of Metal Cutting”, Mcgraw-Hill Book Company Inc, USA, 1-200 (1961).
  • [3] Maity R. M., Chatterjee P., Chakraborty S., “Cutting tool material selection using grey complex proportional assessment method”, Mater. Des., 2012, 36: 372-378.
  • [4] Jawaid A., Koksal S., Sharif S., “Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy”, Journal of Materials Processing Technology, 2001, 116 (1): 2-9.
  • [5] Akgün M., Demir H., “Estimation of Surface Roughness and Flank Wear in Milling of Inconel 625 Superalloy”, Surface Review and Letters 2021, .
  • [6] Ucun İ., Aslantaş K., Apaydın D., “Çok Kaplamalı Kesici takımla tornalama işleminin sonlu elemanlar yöntemiyle modellenmesi”, Electronic Journal of Machine Technologies, 2010, 7 (1): 69-82.
  • [7] Uçak N., Çiçek A., Özkaya E., and Aslantas K., “Finite element simulations of cutting force, torque, and temperature in drilling of Inconel 718”, Procedia CIRP, 2019, 82: 47–52.
  • [8] Parida A. K., and Maity K., “Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis”, Eng. Sci. Technol. an Int. J., 2017, 20 (2): 687-693.
  • [9] Korkmaz M. E., Yaşar N. and Günay M., “Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy”, Eng. Sci. Technol. an Int. J., 2020, 23 (3): 664-673.
  • [10] Parida A. K., and Maity K., “FEM analysis and experimental investigation of force and chip formation on hot turning of Inconel 625”, Def. Technol., 2019, 15 (6): 853-860.
  • [11] Tamang S. K., Teyi N., and Tsumkhapa R. T., “Numerical Simulation of Cutting Force in High Speed Machining of Inconel 718,” Key Eng. Mater., 2020, 856: 43–49.
  • [12] Johnson G. J., Cook W.,“A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures”, In Proceedings of the Seventh International Symposium on Ballistics, The Hague, 541–547, (1983).
  • [13] Lotfi M., Jahanbakhsh M. and Farid A. A., “Wear estimation of ceramic and coated carbide tools in turning of Inconel 625: 3D FE analysis”, Tribology International, 2016, 99: 107-116.
  • [14] Hokka M., Gomon D., Shrot A., Leemet T., Bäker M., and Kuokkala V. T., “Dynamic Behavior and High Speed Machining of Ti-6246 and Alloy 625 Superalloys: Experimental and Modeling Approaches”, Exp. Mech., 2014, 54 (2): 199-210.
  • [15] https://www.alloywire.com/products/inconel-625/. (Erişim Tarihi: 01.01.2021).
  • [16] https://www.azom.com/article.aspx?ArticleID=7682. (Erişim Tarihi: 01.01.2021).
  • [17] https://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-625.pdf. (Erişim Tarihi: 01.01.2021).
  • [18] Çiftci İ., “Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools”, Tribology International, 2006, 39 (6): 565–569.
  • [19] Demir H., Gündüz S. and Erden M. A., “Influence of the heat treatment on the microstructure and machinability of AISI H13 hot work tool steel”, Int. J. Adv. Manuf. Technol., 2018, 95 (5): 2951-2958.
  • [20] Özlü B., Demir H., Türkmen M. and Gündüz S., “Investigation of Machinability of Cooled Microalloy Stell in Oil After the Hot Forging with Coated and Uncoated CBN Cutting Tools”, Sigma J. Eng. Nat. Sci., 2018, 36 (4): 1165-1174.
  • [21] Işık Y., “Investigating the machinability of tool steels in turning operations”, Materials and Design, 2007, 28: 1417-1424.
  • [22] Özlü B., Demir H., Türkmen M., “The effect of mechanical properties and the cutting parameters on machinability of AISI 5140 steel cooled at high cooling rates after hot forging”, Politeknik Dergisi, 2019, 22 (4): 879-887.
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği