Öğrenme Destekleriyle Açınsayıcı Öğrenme Oyunları Tasarlama

Dijital öğrenme oyunları eğitsel hedefleri önceleyen ve öğrenciyi cezbeden bağlamlarda etkileşimli, bağlayıcı ve sürükleyici etkinlikler sunan ortamlardır. Oyun-tabanlı öğrenenlerin beyin dalgaları ve sinir bilimsel örüntüleri konusundaki araştırmalar, oyun-tabanlı öğrenmenin sağladığı ödül ve duygusal bağlayıcılık özellikleri ile bilişsel süreci etkinleştirmek için güçlü bir araç olduğunu göstermektedir. Oyunlaştırma öğeleri ve eğitim bilimsel değişkenlere ilişkin öğelerin başarılı bir şekilde bir arada kullanılması gerekmektedir. Söz konusu bütünleştirmeyi sağlayarak öğrenme oyununu etkileşimli bir öğrenme ortamı yapan temel unsur oyun tasarımında kullanılan modeldir. Alan yazında çok sayıda öğrenme oyunu tasarım modeli olmasına rağmen, disiplinler arası bir eylem olan bilgi keşfettirici öğrenme oyunları tasarımında tek bir model tek başına yeterli olamamaktadır. Bu çalışma, bilgi keşfettirici öğrenme oyunları tasarımında kullanılabilecek bir bütünleşik model geliştirmeyi hedeflemiştir. Çalışmada, öğrencilerin belli bir dersin hedeflerine bir öğrenme oyunu içinde ulaşmasını sağlamak amacıyla, aşağıdaki modeller bir arada ele alınarak bütünsel bir model önerilmiştir: (a) deneysel oyun modeli (Kiili, 2005), (b) 4C/ID öğretim tasarım modeli (Van Merrienboer, Clark ve De Croock, 2002), (c) ARCS motivasyon modeli (Keller, 1987) ve (d) Etkinlik kuramı (Engeström, 1987). Önerilen bütünleşik model, öğrencilerin sadece öğrenme oyunu içindeki oyunsal mekanizmalara odaklanarak oyundaki konu alanı içeriğini ihmal etmelerini ve öğrenme zorluğu yaşamalarını önlemek amacıyla oyundaki öğrenme destek mekanizmalarına özel önem vermektedir. Ayrıca, öğrenme oyunlarında tasarlanacak görev setleriyle öğrencilerin etkinlik akışının artırılması ve oyunun uyarlana bilirliğinin geliştirilmesine dönük bir dizi öneri sunulmaktadır.

Designing Exploratory Serious Games with Learning Supports

Serious games are computer games with learning objectives, and present stimulating contexts with interactive, engaging and immersive activities. The brain wave analysis and the neuro-functional correlates of game-based learning revealed that game-based learning is a powerful tool to enliven processes of learning through providing reward and emotional engagement. Implementing a game design model that effectively incorporates game mechanics and pedagogical mechanics is essential in the development of a serious game as an interactive learning environment. The current literature provides many serious game development framework, however, no single framework is sufficient to cover interdisciplinary field of exploratory serious games. This study aimed to develop a framework for designing exploratory serious games. In order to ensure that learners would attain objectives of the learning unit in the game, the proposed conceptual design framework was based upon (a) Kiili’s experiential gaming model (2005), (b) 4C/ID instructional design model (Van Merrienboer, Clark, & de Croock, 2002), (c) ARCS motivation model (Keller, 1987), and (d) Activity theory (Engeström, 1987). The framework pays particular attention on learning support mechanisms of the game because students may have difficulty in, miss or avoid learning curricular content of an exploratory serious game when they focus on merely game mechanics. Finally, the study also stresses and discusses enhancing players’ flow experience and enriching adaptability of the game through design of task regimes.

___

  • Abbasi, S., Kazi, H., Kazi, A. W., Khowaja, K., & Baloch, A. (2021). Gauge OOP in student’s learning performance, normalized learning gains and perceived motivation with serious games. Information, 12(3), DOI: 10.3390/info12030101
  • Adams, D. M., Mayer, R. E., MacNamara, A., Koenig, A., & Wainess, R. (2012). Narrative games for learning. Journal of Educational Psychology, 104(1), 235-247.
  • Adelantado-Renau, M., Moliner, U. D., Cavero, R. I., Beltran, M. R., Martínez, V., & Álvarez, B. C. (2019). Association between screen media use and academic performance among children and adolescents. JAMA Pediatrics, 173(11), 1058-1058.
  • Akkaya, A. (2019). The effects of serious games on students’ conceptual knowledge of object-oriented programming. Unpublished Master Thesis. Boğaziçi University. Turkey.
  • Akkaya, A., & Akpınar, Y. (2022) Experiential serious-game design for development of knowledge of OOP. Computer Science Education, DOI: 10.1080/08993408.2022.2044673
  • Akpınar, Y., & Turan, M. (2012). Designing a collaborative learning game. Education & Science, 37(163), 254-267.
  • Aliyari, H., Sahraei, H., Daliri, M. R., Minaei-Bidgoli, B., Kazemi, M., Agaei, H., … & Dehghanimohammadabadi, Z. (2018). The beneficial or harmful effects of computer game stress on cognitive functions of players. Basic & Clinical Neuroscience, 9(3), 177–186.
  • Amengual, A. E, Jaume-I-Capó A., & Moyà-Alcover B. (2018). PROGame: A process framework for serious game development for motor rehabilitation therapy. PLoS One, 13(5): e0197383.
  • Amory, A., & Seagram, R. (2003). Educational game models: conceptualization and evaluation. South African Journal of Higher Education, 17(2), 206-217.
  • Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., De Freitas, S., Louchart, S., ... & De Gloria, A. (2015). Mapping learning and game mechanics for serious games analysis. British Journal of Educational Technology, 46(2), 391- 411.
  • Bainbridge, K., Shute, V., Rahimi, S., Liu, Z., Slater, S., Baker, R. S., & DMello, S. K. (2021). Does embedding learning supports enhance transfer during game-based learning? Learning & Instruction, 101547.
  • Berke, J. D. (2018). What does dopamine mean? Nature Neuroscience, 21, 787–793.
  • Chen, H. & Hsu, H. L., (2019). The impact of a serious game on vocabulary and content learning. Computer Assisted Language Learning. 33. 1-22.
  • Clarke, S. J. (2020). Developing a Best Practice Approach to the Design Process of Game-based Learning and Gamification Applications. Unpublished Doctoral Dissertation, Coventry University. UK.
  • Cowley, B., Fantato, M., Jennett, C., Ruskov, M., & Ravaja, N. (2014). Learning when serious: psychophysiological evaluation of a technology-enhanced learning game. Educational Technology & Society, 17(1), 3–16.
  • Cowley, B., Heikura, T., & Ravaja, N. (2013). Learning loops–interactions between guided reflection and experience‐based learning in a serious game activity. Journal of Computer Assisted Learning, 29(4), 348-370.
  • Csikszentmihalyi, M. (2014). Toward a psychology of optimal experience. In M. Csikszentmihalyi, Flow and the Foundations of Positive Psychology (pp. 209-226). CA: Springer.
  • Engeström, Y. (1987). Learning by Expanding. Helsinki: Orienta-konsultit.
  • Engeström, Y. (1993). Developmental studies of work as a test-bench of activity theory. In S. Chaiklin & J. Lave (Eds.), Understanding Practice: Perspectives on Activity and Context (pp. 64-103). MA: Cambridge.
  • Fiorella, L., & Mayer, R. E. (2012). Paper-based aids for learning with a computer-based game. Journal of Educational Psychology, 104(4), 1074–1082.
  • Fraga-Varela, F., Vila, E. C., & Martinez, E. P., (2021). The impact of serious games in mathematics fluency. Comunicar, 29(69), 125-135.
  • Freitas, S. & Neumann, T., (2009). The use of exploratory learning for supporting immersive learning in virtual environments, Computers & Education, 52(2),343-352.
  • Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441-467.
  • Gomez, G. F., Devís, J., & Molina, A. P. (2020). Video game usage time in adolescents’ academic performance. Comunicar, 28(65), 89-99.
  • Greipl, S., Klein, E., Lindstedt, A., Kiili, K., Moeller, K., Karnath, H., Bahnmueller, J., Bloechle, J., & Ninaus, N., (2021). When the brain comes into play: Neuro-functional correlates of emotions and reward in game-based learning, Computers in Human Behavior, 125, DOI: 10.1016/j.chb.2021.106946.
  • Haberlin, K. A., & Atkin, D. J. (2022). Mobile gaming and Internet addiction. Computers in Human Behavior, 126, DOI: 10.1016/j.chb.2021.106989.
  • Harteveld, C. (2010). Triadic game evaluation: A framework for assessing games with a serious purpose. In C. Raymaekers, K. Coninx, K., & J.M. Gonzalez-Calleros (Eds.), Proceedings of the Design and Engineering of Game-like Virtual and Multimodal Environments Workshop, June 20. Berlin, Germany.
  • Hattie, J. (2009). Visible learning. London: Routledge.
  • Holman, D., Pavlica, K., & Thorpe, R. (1997). Rethinking Kolb’s theory of experiential learning in management education. Management Learning, 28(2), 135–148.
  • Ishaq, K., Rosdi, F., Zin, N. A. M., & Abid, A. (2022). Serious game design model for language learning in the cultural context. Education and Information Technologies, 27(7), 9317-9355.
  • Jaccard, D., Suppan, L., Sanchez, E., Huguenin, A., & Laurent, M. (2021). The co.LAB generic framework for collaborative design of serious games. JMIR Serious Games. 9(3): e28674. DOI: 10.2196/28674
  • Kaptelinin, V., & Nardi, A. (2009). Acting with Technology: Activity Theory and Interaction Design. MA: MIT Press.
  • Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2-10.
  • Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. The Internet & Higher Education, 8, 13-24.
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work. Educational Psychologist, 41, 75-86.
  • Kolb, D. (1984). Experiential Learning: Experience as the Source of Learning and Development. NY: Prentice Hall.
  • Krarup, K. B., & Krarup, H. B. (2020). The physiological and biochemical effects of gaming. Environment Research. 184. DOI: 10.1016/j.envres.2020.109344
  • Lazarou, D. (2011). Using cultural‐historical activity theory to design and evaluate an educational game in science education. Journal of Computer Assisted Learning, 27(5), 424-439.
  • Liem, G.A.D., & Martin, A.J. (2013). Direct instruction and academic achievement. In J. Hattie & E. Anderman (Eds.). International Guide to Student Achievement. Oxford: Routledge.
  • Maharg, P. (2007). Transforming Legal Education. Aldershot: Ashgate Publishing.
  • Marne, B., Wisdom, J., Huynh-Kim-Bang, B., & Labat, J. M. (2012). The six facets of serious game design. In Proceeding of 7th European Conference on Technology Enhanced Learning (pp.208-221) Springer, Berlin.
  • Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages through pre-training: Evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology: Applied, 8(3), 147-154.
  • Metwally, A. H. S., Nacke, L. E., Chang, M., Wang, Y., & Yousef, A. M. F. (2021). Revealing the hotspots of educational gamification. International Journal of Educational Research, 109, DOI: 10.1016/j.ijer.2021.101832
  • Miettinen, R. (2000). The concept of experiential learning and John Dewey’s theory of reflective thought and action. International Journal of Lifelong Education, 19(1), 54–72.
  • Miljanovic, M. A., & Bradbury, J. S. (2017). RoboBUG: A serious game for learning debugging techniques. In J. Tenenberg, D. Chinn, J. Sheard, & L. Malmi (Ed.), Proceeding of the ACM Conference on International Computing Education Research (pp. 93-100). NY: ACM.
  • Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social agency in computer-based teaching. Cognition & Instruction, 19(2), 177–213.
  • Newbery, R., Lean, J., & Moizer, J. (2016). Evaluating the impact of serious games. Information Technology & People. 29(4), 733-749.
  • Noh, S. N. A., Mohamed, H., & Zin, N. A. M. (2021). The effects of serious games on students' higher-order thinking skills in science education. In Proceedings of International Conference on Electrical Engineering and Informatics, (pp. 1-5). NY: IEEE.
  • Oxford, J., Ponzi, D., & Geary, D.C., (2010). Hormonal responses differ when playing violent video games against an in-group and outgroup. Evolution & Human Behavior, 31(3),201-209.
  • Paas, F., & Van Merrienboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6, 351-372.
  • Paas, F., Renkl, A. & Sweller, J. (2003). Cognitive load theory. Instructional Science, 3, 1-8.
  • Paas, F., Tuovinen, J. E., Tabbers, H. & Van Germen, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71.
  • Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785–797.
  • Rick, J., & Lamberty. K. K. (2005). Medium-based design: extending a medium to create an exploratory learning environment. Interactive Learning Environment, 13(3), 179–212.
  • Rollings, A., & Adams, E. (2003). Andrew Rollings and Ernest Adams on Game Design. Indianapolis: New Riders
  • Rooney, P. (2012). A theoretical framework for serious game design: Exploring pedagogy, play and fidelity and their implications for the design process. International Journal of Game-based Learning, 2(4), 41-60.
  • Shapiro, L., & Stolz, S. A. (2019). Embodied cognition and its significance for education. Theory and Research in Education. 17(1), 19-39.
  • Sun, L., Guo, Z., & Hu, L. (2021). Educational games promote the development of students’ computational thinking. Interactive Learning Environments, DOI: 10.1080/10494820.2021.1931891
  • Toprak, Y. E. S., Akcay, H., & Kapici, H. O. (2021). Impacts of serious games on middle school students’ science achievement and attitudes towards science. International Journal of Technology in Education and Science, 5(2), 203-212.
  • Umbara, U., Munir., M., Susilana, R., & Puadi, E. (2021). Algebra dominoes game: Redesigning mathematics learning during the Covid-19 pandemic. International Journal of Instruction, 14(4), 483-502.
  • Van den Hurk, A., Meelissen, M., & Van Langen, A. (2019). Interventions in education to prevent STEM pipeline leakage. International Journal of Science Education, 41(2), 150-164.
  • Van Merriënboer, J. J., Clark, R. E., & de Croock, M. B. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research & Development, 50(2), 39-61.
  • Verschueren, S., Buffel, C., & Vander, S. G., (2019). Developing theory-driven, evidence-based serious games for health: framework based on research community insights. JMIR Serious Games, 7(2): e11565.
  • Westera, W. (2019). Why and how serious games can become far more effective. Journal of Educational Technology & Society, 22(1), 59-69.
  • Wouters, P., & Van Oostendorp, H. (2013). A meta-analytic review of the role of instructional support in game-based learning. Computers & Education, 60(1), 412-425.
  • Yusoff, A., Crowder, R., Gilbert, L., & Wills, G. (2009). A conceptual framework for serious games. In Proceedings of 9th IEEE International Conference on Advanced Learning Technologies (pp. 21-23). MA. IEEE.
  • Zhonggen, Y. (2019). A meta-analysis of use of serious games in education over a decade. International Journal of Computer Games Technology, DOI: 10.1155/2019/4797032.