Rezin Esaslı Dental Materyallerin Sitotoksisitesine Genel Bir Bakış

Dişhekimliği pratiğinde rezin esaslı materyaller estetik özellikleri nedeni ile ön plana çıkmaktadır. Günümüzde klinik başarı sadece materyalin mekanik ve estetik özellikleri değil, aynı zamanda biyolojik açıdan güvenirliliği ve dokularla uyumluluğu ile de ilişkilendirilmektedir. Bu yaklaşımdan hareketle rezin esaslı dental materyallerin içeriğindeki monomerler nedeni ile biyouyumlulukları sorgulanmaktadır. Bu derlememin amacı biyoyumluluğa ilişkin temel kavramları ve yöntemleri gözden geçirmek, rezin esaslı materyallerin sitotoksisitesine ilişkin çalışmaların verilerini sunmak ve son olarak klinik uygulamalara ilişkin tavsiyeleri bildirmektir.

An Overview To The Cytotoxicity Of Resin Based Dental Materials

Resin based dental materials have became popular due to their aesthetic features. Clinical success of the materials depends on their mechanical and aesthetic properties as well as their biocompatibility. In this approach, the biocompatibility of resin based dental materials are inquired due to their resin monomer content. The aim of this review is to consider the main definitions and methods about biocompatibility, present the results of the studies related to the cytotoxicity of resin based dental materials and report the recommendations for clinical practice.

___

  • 1. Wataha JC. Principles of biocompability for dental practioners. J Prosthet Dent 2001; 86(2): 203-209.
  • 2. Hanks CT, Wataha JC, Sun Z. In vitro models of biocompatibility: A review. Dent Mater 1996; 12: 186-193.
  • 3. Schmalz G, Arenholdt-Bindslev D. Basic Aspects. In: Schmalz G, Arenholdt-Bindslev D. Biocompatibility of Dental Materials. 1st Ed., Springer, Verlag Berlin Heidelberg, 2009, 1-12.
  • 4. Murray PE, García Godoy C, García Godoy F. How is the biocompatibilty of dental biomaterials evaluated? Med Oral Patol Oral Cir Bucal 2007; 12(3): 258-266.
  • 5. ISO 10993-5:2009 Biological evaluation of medical devices -- Part 5: Tests for in vitro cytotoxicity. http://www.iso.org. Erişim tarihi: 02.03.2015
  • 6. Schmalz G. Determination of Biocompatibility. In: Schmalz G, Arenholdt-Bindslev D. Biocompatibility of Dental Materials. 1st Ed., Springer, Verlag Berlin Heidelberg, 2009, 13-43.
  • 7. El-kholany NR, Abielhassan MH, Elembaby A, Maria OM. Apoptotic effect of different self-etch dental adhesives on odontoblasts in cell cultures. Arch Oral Biol 2011. doi: 10.1016/j.archoralbio.2011.11.019.
  • 8. Spagnuolo G, Annunziata M, Rengo S. Cytotoxicity and oxidative stress caused by dental adhesive systems cured with halogen and LED lights. Clin Oral Invest 2004; 8: 81-85.
  • 9. Kusdemir M, Gunal S, Ozer F, Imazato S, Izutani N, Ebisu S, Blatz MB. Evaluation of cytotoxic effects of six self-etching adhesives with direct and indirect tests. Dent Mater J 2011; 30(6): 799-805.
  • 10. Schmalz G, Schuster U, Nützel K, Schweikl H. An in vitro pulp chamber with three-dimensional cell cultures. J Endod 1999; 25: 24-29.
  • 11. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res 2011; 90: 402- 416.
  • 12. Ferracane JL. Resin composite--state of the art. Dent Mater 2011; 27: 29-38.
  • 13. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997; 105: 97- 116.
  • 14. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007; 28: 3757-3785.
  • 15. Schmalz G. Resin-Based Composites. In: Schmalz G, Arenholdt-Bindslev D. Biocompatibility of Dental Materials. 1st Ed., Springer, Verlag Berlin Heidelberg, 2009, 99-137.
  • 16. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB. Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 1995; 74: 1602-1606.
  • 17. Spagnulo G, Mauro C, Leonardi A, Santillo M, Paterno R, Schweikl H. NF-B protection against apoptosis induced by HEMA. J Dent Res 2004; 83: 703-707.
  • 18. Janke V, von Neuhoff N, Schlegelberger B, Leyhausen G, Geurtsen W. TEGDMA causes apoptosis in primary human gingival fibroblasts. J Dent Res 2003; 82: 814-818.
  • 19. Lee DH, Lima BS, Lee YK, Ahn SJ, Yanga HC. Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures. Dent Mater 2006; 22: 1086-1092.
  • 20. Bouillaguet S, Virtiliggo M, Wataha J, Ciucchi B. The influence of dentine permeability on cytotoxicity of four dentine bonding systems in vitro. J Oral Rehabil 1998; 25: 45-51.
  • 21. Imazato S, Tarumi H, Ebi N, Ebisu S. Cytotoxic effects of composite restorations employing selfetching primers or experimental antibacterial primers. J Dent 2000; 28: 61-67.
  • 22. Imazato S, Ebi N, Tarumi H, Russell RRB, Kaneko T, Ebisu S. Bactericidal activity and cytotoxicity of antibacterial monomer MDPB. Biomaterials 1999; 20: 899-903.
  • 23. Hanks CT, Wataha JC, Parsell RR, Strawn SE. Delineation of cytotoxic concentrations of two dentin bonding agents in vitro. J Endod 1992; 18: 589-596
  • 24. Koulaouzidou EA, Helvatjoglu-Antoniades M, Palaghias G, Karanika-Kouma A, Antoniades D. Cytotoxicity of dental adhesives in vitro. Eur J Dent. 2009; 3(1): 3-9.
  • 25. Galler K, Hiller KA, Ettl T, Schmalz G. Selective influence of dentin thickness upon cytotoxicity of dentin contacting materials. J Endod 2005; 31: 396-399.
  • 26. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil 1994; 21: 441- 452.
  • 27. Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S. Degree of conversion of composites measured by DTA and FTIR. Dent Mater 2001; 17: 178-183.
  • 28. Costa CAS, Hebling J, Hanks CT. Effects of light curing time on the cytotoxicity of a restorative resin composite applied to an immortalized odontoblast-cell line. Oper Dent 2003; 28: 365-370.
  • 29. Nalcacı A, Oztan MD, Yılmaz S. Cytotoxicity of composite resins polymerized with different curing methods. Int Endod J 2004; 37: 151-156.
  • 30. Stahl F, Ashworth SH, Jandt KD, Mills RW. Lightemitting diode (LED) polymerisation of dental composites flexural properties and polymerisation potential. Biomaterials 2000; 21: 1379-1385.
  • 31. Kurachi C, Tuboy AM, Magalhaes DV, Bagnato VS. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater 2001; 117: 309-315.
  • 32. Jandt KD, Mills RW, Blackwell GB, Ashworth SH. Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dent Mater 2000; 16: 41-47.
  • 33. Caughman WF, Caughman GB, Shifflett RA, Rueggeberg F, Schuster GS. Correlation of cytotoxicity, filler loading and curring time on dental composites. Biomaterials 1991; 12: 737- 740.
  • 34. Durner J, Spahl W, Zaspel J, Schweikl H, Hickel R, Reichl FX. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater 2010; 26: 91-99.
  • 35. Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res 2008; 87: 710-719.
  • 36. Ferracane JL. Resin-based composite performance: are there some things we can't predict? Dent Mater 2013; 29: 51-58.
  • 37. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med 2001; 12: 136-151.
  • 38. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater 2005; 21: 68-74.
  • 39. Shafiei F, Tavangar MS, Razmkhah M, Attar A, Alavi AA. Cytotoxic effect of silorane and methacrylate based composites on the human dental pulp stem cells and fibroblasts. Med Oral Patol Oral Cir Bucal 2014;19(4): 350-358.
  • 40. Wataha JC, Lockwood PE, Bouillaguet S, Noda M. In vitro biological response to core and flowable dental restorative materials. Dent Mater 2003; 19: 25-31.
  • 41. Seiss M, Langer C, Hickel R, Reichl FX. Quantitative determination of TEGDMA, BHT, and DMABEE in eluates from polymerized resinbased dental restorative materials by use of GC/MS. Arch Toxicol 2009; 83: 1109-1115.
  • 42. Costa CAS, Hebling J, Hanks CT. Current status of pulp capping with dentin adhesive systems: a review. Dent Mater 2000; 16: 188-197.
  • 43. Murray PE, Hafez AA, Windsor LJ, Smith AJ, Cox CF. Comparison of pulp responses following restoration of exposed and non-exposed cavities. J Dent 2002; 30: 213-222.
  • 44. Modena KC, Casas-Apayco LC, Atta MT, Costa CA, Hebling J, Sipert CR et al. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci 2009; 17: 544- 554
  • 45. Nowicka A, Parafiniuk M, Lipski M, Lichota D, Buczkowska-Radlinska J. Pulpo-dentin complex response after direct capping with self-etch adhesive systems. Folia Histochem Cytobiol 2012; 50(4): 565-573.
  • 46. Silva GA, Gava E, Lanza LD, Estrela C, Alves JB. Subclinical failures of direct pulp capping of human teeth by using a dentin bonding system. J Endod 2013; 39(2): 182-189.
  • 47. Hebling J, Giro EMA, Costa CAS. Biocompatibility of an adhesive system applied to exposed human dental pulp. J Endod 1999; 25: 676-682.
  • 48. Costa CAS, Nascimento ABL, Teixeira HM, Fontana UF. Response of human pulps capped with a self-etching adhesive system. Dent Mater 2001; 17(3): 230-240.
  • 49. Geurtsen W, Spahl W, Muller K, Leyhausen G. Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J Biomed Mater Res 1999; 48(6): 772-777.
  • 50. Vajrabhaya L, Pasasuk A, Harnirattisai C. Cytotoxicity evaluation of single component dentin bonding agents. Oper Dent 2003; 28(4): 440-444.
  • 51. Costa CAS, Giro EMA, Nascimento ABL, Teixeira HM, Hebling J. Short-term evaluation of the pulp-dentin complex response to a resinmodified glass-ionomer cement and a bonding agent applied in deep cavities. Dent Mater 2003; 19(8): 739-746.
  • 52. Tsukimura N, Yamada M, Aita H, Hori N, Yoshino F, Chang-II Lee M et al. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement. Biomaterials 2009;30: 3378-3389.
  • 53. Galler KM, Schweikl H, Hiller KA, Cavender AC, Bolay C, D'Souza RN et al. TEGDMA reduces the expression of genes involved in biomineralization. J Dent Res 2011; 90: 257- 262.
  • 54. Hanks CT, Strawn SE, Wataha JC, Craig RG. Cytotoxic effects of resin components on cultured mammalian fibroblasts. J Dent Res 1991; 70: 1450-1455.
  • 55. About I. Dentin regeneration in vitro: the pivotal role of supportive cells. Adv Dent Res 2011; 23: 320-324.
  • 56. About I, Camps J, Mitsiadis TA, Bottero MJ, Butler W, Franquin JC. Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. Biomed Mater Res 2002; 63: 418-423.
  • 57. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. Effects of HEMA and TEDGMA on the in vitro odontogenic differentiation potential of human pulp stem/progenitor cells derived from deciduous teeth. Dent Mater 2011; 27: 608-617.
  • 58. Bakopoulou A, Leyhausen G, Volk J, Koidis P, Geurtsen W. Effects of resinous monomers on the odontogenic differentiation and mineralization potential of highly proliferative and clonogenic cultured apical papilla stem cells. Dent Mater 2012; 28: 327-339.
  • 59. Krifka S, Spagnuolo G, Schmalz G, Schweikl H. A review od adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013; 34: 4555-4563.
  • 60. Schweikl H, Spagnulo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006; 82: 870-877.
  • 61. Baumgardner KR, Sulfaro MA. The antiinflammatory effects of human recombinant Copper-Zinc Superoxide Dismutase on pulp inflammation. J Endod 2001; 27: 190-195.
  • 62. Atsumi T, Murata J, Kamiyanagi I, Fujisawa S, Ueha T. Cytotoxicity of photosensitizers camphorquinone and 9-fluorenone with visible light irradiation on a human submandibularduct cell line in vitro. Arch Oral Biol 1998; 43: 73-81.
  • 63. Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W. Effect of TEGDMA on the intracellular glutathione concentration of human gingival fibroblasts. J Biomed Mater Res 2002; 63: 746- 751.
  • 64. Mates JM, Sanchez-Jimenez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Intl J Biochem Cell Biol 2000; 32: 157-170 65. Bolt HM, Foth H, Hengstler JG, Degen GH. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective. Toxicol Lett 2004; 151: 29-41.
  • 66. Pashley DH, Carvalho RM. Dentine permeability and dentine adhesion. J Dent 1997; 25: 355-372.
  • 67. Schmalz G, Schuster U, Thonemann B, Barth M, Esterbauer S. Dentin barrier test with transfected bovine pulp-derived cells. J Endod 2001; 27: 96- 102.
  • 68. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Inv 2008; 12: 1-8.
  • 69. Hamid A, Hume WR. The effect of dentine thickness on diffusion of resin monomers in vitro. J Oral Rehabil 1997; 24: 20-25.
  • 70. Galler K, Hiller KA, Ettl T, Schmalz G. Selective influence of dentin thickness upon cytotoxicity of dentin contacting materials. J Endod 2005; 31: 396-399.
  • 71. Pashley DH, Liewehr FR. Structure and functions of the dentin- pulp complex. In: Cohen S, Hargreaves KM. 9th Ed., Elsevier, St.Louis: Mosby, 2006, 460-513.
  • 72. Schmalz G, Hiller KA, Nunez LJ, Stoll J, Weis K. Permeability characteristics of bovine and human dentin under different pretreatment conditions. J Endod 2001; 27: 23-30.
  • 73. Costa CAS, Teixeira HM. Response of human pulps following acid conditioning and application of a bonding agent in deep cavities. Dent Mater 2002; 18: 543-551.
  • 74. Schmalz G. The biocompatibility of nonamalgam dental filling materials. Eur J Oral Sci 1998; 106: 696-706.
  • 75. Tamilselvam S, Divyanand MJ, Neelakantan P. Biocompatibility of a conventional glass ionomer, ceramic reinforced glass ionomer, giomer and resin composite to fibroblasts: in vitro study. J Clin Pediatr Dent. 2013; 37(4): 403-406.