Kanal Eğeleri ve Gütaperkanın Radyoopasitelerinin Dijital Radyografik Teknik ve Enerji Dağılımlı X-ışını Spektrometresi Kullanılarak Değerlendirilmesi

Giriş ve Amaç: Bu çalışmanın amacı dört farklı kanal eğesinin ve gütaperkanın radyoopasitelerinin dijital radyografik teknik ve enerji dağılımlı X-ışını spektrometresi ile karşılaştırmalı olarak değerlendirilmesidir. Yöntem ve Gereçler: Reciproc,Reciproc Blue,Protaper ve paslanmaz çelik eğeleri ve gütaperka kon kullanıldı.Örneklerin dijital radyografik görüntüleri standart ışınlama koşulları sağlanarak elde edildi.Ek olarak, enerji dağılımlı X-ışını spektrometresi analizi ile test gruplarının kimyasal içerikleri saptandı.Materyallerin içerikleri ile radyoopasite değerleri arasındaki ilişki değerlendirildi.Veriler One-way ANOVA ve post-hoc Tukey analizi kullanılarak istatistiksel olarak karşılaştırıldı(p=0,05). Bulgular: Örneklerin radyoopasite değerleri büyükten küçüğe doğru Paslanmaz çelik,Reciproc,Reciproc Blue,Protaper ve gütaperka şeklinde belirlendi ve içeriklerindeki nikel, titanyum, demir ve çinko oranları ile uyumlu radyoopasite değerlerine sahip oldukları görüldü.Reciproc,Reciproc Blue,Protaper,paslanmaz çelik eğe radyoopasite değerleri arasında istatistiksel olarak fark olmadığı ortaya kondu(p>0,05).Eğe gruplarının tümü ile gütaperka arasındaki farkın ise istatiksel olarak anlamlı olduğu tespit edildi(p

Evaluation of Radioopacity of Canal Files and Gutta-percha Using Digital Radiographic Technique and Energy Dispersive X-ray Spectrometry

Introduction: The aim of this study was to compare the radiopacities of four different root canal files and gutta-percha with digital radiographic technique and energy dispersion X-ray spectrometry. Methods: Reciproc, Reciproc Blue, Protaper and stainless steel files and gutta-percha cone were used.Digital radiographic images of specimens were obtained under standard exposure conditions.In addition, the chemical contents of the test groups were determined by energy dispersive X-ray spectrometry analysis.The relationship between the contents of the materials and the radiopacity values was evaluated. The data were compared statistically using One-way ANOVA and post-hoc Tukey analysis(p=0.05). Results: The radiopacity values of the samples were determined as Stainless steel file, Reciproc Blue, Protaper and gutta-percha from the highest to the least, and it was observed that they had radioopacity values compatible with the nickel, titanium, iron and zinc ratios in their contents. It was revealed that there was no statistical difference between the radiopacity values of Reciproc, Reciproc Blue, Protaper, and stainless steel files(p>0.05).The difference between all file groups and gutta-percha was found to be statistically significant(p

___

  • 1. Hülsmann M, Peters OA, Dummer PM. Mechanical preparation of root canals: shaping goals, techniques and means. Endod Top 2005;10:30-76.
  • 2. Bilgili D, Yilmaz S, Dumani A, Yoldas O. Retracted: Postoperative pain after irrigation with Vibringe versus a conventional needle: a randomized controlled trial. Int Endod J 2016;49:813.
  • 3. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006;32:1031–43.
  • 4. Spili P, Parashos P, Messer HH. The impact of instrument fracture on outcome of endodontic treatment. J Endod 2005;31:845–50.
  • 5. McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J 2013;214:341–8.
  • 6. Ungerechts C, Bardsen A, Fristad I. Instrument fracture in root canals - where, why, when and what? A study from a student clinic. Int Endod J 2014;47:183–90.
  • 7. Walia H, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of nitinol root canal files. J Endod 1988;14:346-51.
  • 8. Kazemi RB, Stenman E, Spångberg LS. A comparison of stainless steel and nickel-titanium Htype instruments of identical design: torsional and bending tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;90:500-6.
  • 9. Cheung GS, Liu CS. A retrospective study of endodontic treatment outcome between nickeltitanium rotary and stainless steel hand filing techniques. J Endod 2009;35:938-43.
  • 10. Guelzow A, Stamm O, Martus P, Kielbassa A. Comparative study of six rotary nickel–titanium systems and hand instrumentation for root canal preparation. Int Endod J 2005;38:743-52.
  • 11. Panitvisai P, Parunnit P, Sathorn C, Messer HH. Impact of a retained instrument on treatment outcome: a systematic review and meta-analysis. J Endod 2010; 36: 775- 780.
  • 12. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26:161-5
  • 13. Pedulla E, Grande NM, Plotino G, Gambarini G, Rapisarda E. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod 2013;39:258-61.
  • 14. You SY, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W. Lifespan of one nickel-titanium rotary file with reciprocating motion in curved root canals. J Endod 2010;36:1991-4.
  • 15. Shen Y, Qian W, Abtin H, Gao Y G, Haapasalo M. Fatigue testing of controlled memory wire nickeltitanium rotary instruments. J Endod 2011; 37: 997–1001.
  • 16. Hieawy A, Haapasalo M, Zhou H, et al. Phase transformation behavior and resistance to bending and cyclic fatigue of ProTaper Gold and ProTaper Universal instruments. J Endod 2015;41:1134–1138.
  • 17. Silva EJ, Muniz BL, Pires F, et al. Comparison of canal transportation in simulated curved canals prepared with ProTaper Universal and ProTaper Gold systems. Restor Dent Endod 2016;41:1–5.
  • 18. Parashos P, Messer H. Questionnaire survey on the use of rotary nickel–titanium endodontic instruments by Australian dentists. Int Endod J 2004;37:249-59.
  • 19. Cheung GS. Instrument fracture: mechanisms, removal of fragments, and clinical outcomes. Endod Top 2007;16:1-26.
  • 20. Spili P, Parashos P, Messer HH. The impact of instrument fracture on outcome of endodontic treatment. J Endod 2005;31:845-50.
  • 21. Shemesh H, Roeleveld AC, Wesselink PR, Wu MK. Damage to root dentin during retreatment procedures. J Endod 2011;37:63-6.
  • 22. Güler B, Uzun I, Özyürek T, Karabulut C. Retrieval of a seperated reciproc file from apical third of root canal of maxillary second premolar by masserann kit: case report. J Dent Fac Atatürk Uni 2015;10:37-40.
  • 23. Hülsmann M. Methods for removing metal obstructions from the root canal. Dent Traumatol 1993;9:223-37.
  • 24. Saunders JL, Eleazer PD, Zhang P, et al. Effect of a separated instrument on bacterial penetration of obturated root canals. J Endod 2004;30:177–9
  • 25. Tsurumachi T, Honda K. A new cone beam computerized tomography system for use in endodontic surgery. Int Endod J 2007;40:224–32.
  • 26. McGuigan MB, Louca C, Duncan HF. Clinical decision-making after endodontic instrument fracture. Br Dent J 2013;214:395–400.
  • 27. Gandevivala A, Parekh B, Poplai G, Sayed A. Surgical removal of fractured endodontic instrument in the periapex of mandibular first molar. J Int Oral Health 2014;6:85–8.
  • 28. Patel S, Dawood A, Pitt Ford T, Whaites E. The potential applications of cone beam computed tomography in the management of endodontic problems. Int Endod J 2007;40:818–30.
  • 29. Ramos Brito AC, Verner FS, Junqueira RB, Yamasaki MC, Queiroz PM, Freitas DQ, OliveiraSantos C. Detection of fractured endodontic instruments in root canals: comparison between different digital radiography systems and cone-beam computed tomography. J Endod 2017;43:544-549.
  • 30. Rosen E, Venezia NB, Azizi H, Kamburoglu K, Meirowitz A, Ziv-Baran T, Tsesis I. A comparison of cone-beam computed tomography with periapical radiography in the detection of separated instruments retained in the apical third of root canal-filled teeth. J Endod 2016;42:1035-9.
  • 31. Costa ED, Brasil DM, Queiroz PM, Verner FS, Junqueira RB, Freitas DQ. Use of the metal artefact reduction tool in the identification of fractured endodontic instruments in cone-beam computed tomography. Int Endod J 2020; 53: 506–512.
  • 32. Mc Guigan MB., Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J 2013; 214: 341-8.
  • 33. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006; 32: 1031-43.
  • 34. Carvalho-Júnior JR, Correr-Sobrinho L, Correr AB, Sinhoreti MA, Consani S, Sousa-Neto MD. Radiopacity of root filling materials using digital radiography. Int Endod J 2007;40:514-520.
  • 35. Katz A, Kaffe I, Littner M, Tagger M, Tamse A. Densitometric measurement of radiopacity of Guttapercha cones and root dentin. J Endod 1990;16:211- 3.
  • 36. Petry BL, Bodanezi A, Baldasso FER, Delai D, Larentis NL, Fontanella VRC, Kopper PMP. Radiopacity evaluation of gutta-percha points in thinner samples than the ANSI/ADA recommendation. Braz Dent J 2017; 28: 592-596
  • 37. Baksi BG, Eyuboglu TF, Sen BH, Erdilek N. The effect of three different sealers on the radiopacity of root fillings in simulated canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:138-141
  • 38. Malka VB, Hochscheidt GL, Larentis NL, Grecca FS, Fontanella VR, Kopper PM. A new in vitro method to evaluate radioopacity of endodontic sealers. Dentomaxillofac Radiol 2015;44:1-5.
  • 39. Akdeniz, BG, Soğur, E. An ex vivo comparison of conventional and digital radiography for perceived image quality of root fillings Int Endod J 2005;38:397-401.
  • 40. Baksi BG, Sen BH, Eyuboglu TF. Differences in aluminum equivalent values of endodontic sealers: conventional versus digital radiography. J Endod 2008;34,1101-1104.
  • 41. McDonnell D, Price C. An evaluation of the Sens-ARay digital dental imaging system. Dentomaxillofac Radiol 1993;22:121-126.
  • 42. American National Standards Institute. American Dental Association. Specification (ANSI/ADA). Endodontic sealing materials. Chicago, 2000.
  • 43. International Organization for Standardization. ISO 6876: dental root canal sealing materials. 2. ed. Geneva, Switzerland, 2001
  • 44.Gündoğdu EC, Doğanay E, Arslan H. A questionnaire study related to reasons and solutions of seperation of nickel titanium instruments. J Dent Fac Atatürk Uni 2017; 27: 130-138
  • 45. Generali L, Puddu P, Borghi A, et al. Mechanical properties and metallurgical features of new and ex vivo used Reciproc Blue and Reciproc. Int Endod J 2019; 53, 250-264.
  • 46. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J 2000; 33, 297–310.
  • 47. Üreyen Kaya B, Erik CE, Kiraz G. Atomic force microscopy and energy dispersive X-ray spectrophotometry analysis of reciprocating and continuous rotary nickel-titanium instruments following root canal retreatment. Microsc Res Tech 2019; 82, 1157–1164.
  • 48.Micoogullari Kurt S, Kaval ME, Serefoglu B, Kandemir Demirci G, Çalışkan M. Cyclic fatigue resistance and energy dispersive X-ray spectroscopy analysis of novel heat-treated nickel-titanium instruments at body temperature. Microsc Res Tech 2020; 83, 790-794.
  • 49. Martinez Rus F, Garcia AM, de Aza AH, Pradies G. Radiopacity of zirconia-based all-ceramic crown systems. Int J Prosthodont 2011; 24: 144-146.
  • 50. Candeiro GT, Correia FC, Duarte MA, et al. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod 2012; 38: 842–5.
  • 51. Tsuge T. Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials. J Oral Sci 2009; 51: 223–230
Ege Üniversitesi Diş Hekimliği Fakültesi-Cover
  • ISSN: 1302-7476
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1979
  • Yayıncı: Ege Üniversitesi