Endodontide Konik Işınlı Bilgisayarlı Tomografi Talep Edilen Olgularda Ön Teşhislerin Radyolojik Doğrulanma Oranı: Retrospektif Çalışma

Giriş ve Amaç: Bu çalışmanın amacı, endodontistler tarafından talep edilen konik ışınlı bilgisayarlı tomografi (KIBT) incelemelerinde ön teşhis/istek nedenlerinin dağılımının ve endodontistler tarafından belirlenen ön teşhislerin radyolojik tanı ile doğrulanma oranının belirlenmesidir. Yöntem ve Gereçler: Çalışmaya 01 Ocak-31 Aralık 2019 tarihleri arasında Ağız Diş ve Çene Radyolojisi biriminde gerçekleştirilen KIBT incelemelerine ait raporlar dahil edildi. Endodonti Anabilim Dalı tarafından talep edilen KIBT inceleme raporları belirlenerek, her bir incelemeye yönelik ön teşhis/istek nedenleri kaydedildi. Endodonti uzmanlarının KIBT görüntüleme taleplerine yönelik dağılım tanımlayıcı istatistik ile değerlendirildi. Endodontik ön teşhislerin radyolojik tanı ile doğrulanma oranları ise Wilson yöntemine göre hesaplandı ve %95 güven aralığı ile birlikte sunuldu. Bulgular: Çalışmaya dahil edilen 4325 adet KIBT raporunun 329 tanesinin (%7,60) endodontik patolojilerin incelenmesi amacıyla talep edildiği belirlendi. En sık görülen endodontik ön teşhis/istek nedeni apikal lezyon tetkiki (%39,36), kök kanal morfolojisinin değerlendirilmesi (%22,22) ve vertikal kırık (%20,63) şeklinde sıralanmaktaydı. Endodontik ön teşhislerin radyolojik tanı ile doğrulanma oranının en yüksek olduğu patoloji internal rezorbsiyon (%86), en düşük olduğu patoloji ise vertikal kırık (%40) olarak belirlendi. Tüm olgular değerlendirildiğinde endodontik ön teşhislerin radyolojik tanı ile doğrulanma oranı %55 olarak hesaplandı. Tartışma ve Sonuç: İnternal rezorbsiyon olguları radyolojik olarak en sık doğrulanan ön teşhis olurken, doğrulanma oranı vertikal kırık şüphesiyle KIBT incelemeye yönlendirilen olgularda düşmektedi

The Radiological Confirmation Rate of Endodontic Prediagnoses for Cone Beam Computed Tomography Examinations

Introduction: The aim of this study was to identify endodontic prediagnoses and referral reasons for Cone Beam Computed Tomography (CBCT) examinations, and to determine the radiological confirmation rate on archived CBCT reports. Methods: Radiological reports from CBCT examinations performed between January 01-December 31, 2019 were scanned through the archives. CBCT examination that were requested by endodontists were identified and endodontic prediagnoses were recorded for each examination. The distribution of endodontic prediagnoses was analyzed using descriptive methods. The radiological confirmation rate between endodontic prediagnoses and radiological diagnosis was calculated using Wilson’s method with 95% confidence interval. Results: A total of 4325 CBCT reports were included. Among these 329 CBCT examinations (7.60%) were performed for the diagnosis of endodontic pathologies. The most common reasons for CBCT referral were examination of apical lesion (39.36%), root canal morphology (22,22%) and vertical fracture (20.63%). Internal root resorption was the highest radiologically confirmed pathology, while confirmation rate for vertical fracture was the lowest. The overall radiological confirmation rate for endodontic prediagnoses was calculated as 55%. Discussion and Conclusion: According to our results a prediagnosis of internal root resorption is commonly confirmed by CBCT, while the radiological confirmation rate for suspected vertical root fracture is low.

___

  • 1. Patel S, Brown J, Pimentel T, Kelly RD, Abella F, Durack C. Cone beam computed tomography in Endodontics - a review of the literature. Int Endod J 2019; 52: 1138–1152.
  • 2. Scarfe WC, Levin MD, Gane D, Farman AG. Use of Cone Beam Computed Tomography in Endodontics. Int J Dent 2009; 2009:634567.
  • 3. Pauwels R, Beinsbergera J, Collaert B, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 2012; 81: 267- 271.
  • 4. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 2006; 35: 219-226.
  • 5. Khanna AB. Applications of cone beam computed tomography in endodontics. Evid Based Endod 2020; 5: 1-16.
  • 6. Liang YH, Jiang L, Gao XJ, Shemesh H, Wesselink PR, Wu MK. Detection and measurement of artificial peri- apical lesions by cone-beam computed tomography. Int Endod J 2014; 47: 332–338.
  • 7. Ponder SN, Benavides E, Kapila S, Hatch NE. Quantification of external root resorption by low- vs high-resolution cone-beam computed tomography and periapical radiography: A volumetric and linear analysis. Am J Orthod Dentofacial Orthop 2013; 143: 77-91.
  • 8. Ozen T, Kamburoğlu K, Cebeci AR, Yüksel SP, Paksoy CS. Interpretation of chemically created periapical lesions using 2 different dental cone-beam computerized tomography units, an intraoral digital sensor, and conventional film. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 426-432.
  • 9. Beacham JT, Geist JR, Yu Q, Himel VT, Sabey KA. Accuracy of Cone-beam Computed Tomographic Image Interpretation by Endodontists and Endodontic Residents. J Endod 2018; 44: 571-575
  • 10. Kamburoğlu K, Koç C, Sönmez G, Elbahary S, Rosen E, Tsesis I. Effect of cone beam computed tomography voxel size and dental specialty status on the agreement of observers in the detection and measurement of periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132: 346-351.
  • 11. Mota de Almeida FJ, Hassan D, Nasir Abdulrahman G, Brundin M, Romani Vestman N. CBCT influences endodontic therapeutic decision-making in immature traumatized teeth with suspected pulp necrosis: a before-after study. Dentomaxillofac Radiol 2021; 4: 20200594.
  • 12. Campbell MJ, Daly LE, Machin D. Special topics. In: Altman DG, Machin D, Bryant TN, Gardiner MJ, eds. Statistics with confidence. 2nd edn. BMJ Books, 2000: 153–67.
  • 13. Tsai P, Torabinejad M, Rice D, Azevedo B. Accuracy of cone-beam computed tomography and periapical radiography in detecting small periapical lesions. J Endod 2012; 38: 965-970.
  • 14. Paurazas S, Geist J, Pink F, Hoen M, Steiman H. Com- parison of diagnostic accuracy of digital imaging by using CCD and CMOS-APS sensors with E-speed film in the detection of periapical bony lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89: 356-362.
  • 15. Hashem D, Mannocci F, Patel S, Manoharan A, Watson TF, Banerjee A. Evaluation of the efficacy of calcium silicate vs. glass ionomer cement indirect pulp capping and restoration assessment criteria: a randomised con- trolled clinical trial-2-year results. Clin Oral Investig 2018; 23: 1931-1939.
  • 16. Long H, Zhou Y, Ye N et al. Diagnostic accuracy of CBCT for tooth fractures: a meta-analysis. J Dent 2014; 42: 240-248.
  • 17. Vaz de Souza D, Schirru E, Mannocci F, Foschi F, Patel S. External Cervical Resorption: a Comparison of the Diagnostic Efficacy Using 2 Different Conebeam Computed Tomographic Units and Periapical Radiographs. J Endod 2017; 43: 121-125
  • 18. Rodriquez G, Abella F, Duran-Sindreu F et al. Influence of cone-beam computed tomography in clinical decision making among specialists. J Endod 2017; 43: 194-199.
  • 19. Talwar S, Utneja S, Nawal RR, Kaushik A, Srivastava D, Oberoy SS. Role of cone-beam computed tomography in diagnosis of vertical root fractures: a systematic review and meta-analysis. J Endod 2016; 42: 12– 24.
  • 20. Patel S, Brady E, Wilson R, Brown J, Mannocci F. The detection of vertical root fractures in root filled teeth with periapical radio- graphs and CBCT scans. Int Endod J 2013; 46: 1140-1152.
  • 21. Salineiro FCS, Kobayashi Velasco S, Braga MM, Cavalcanti MGP. Radiographic diagnosis of root fractures: a systematic review, meta-analyses and sources of heterogeneity. Dentomaxillofac Radiol 2017; 46: 20170400.
  • 22. Tsesis I, Rosenberg E, Faivishevsky V, et al. Prevalence and associated periodontal status of teeth with root perforation: A retrospective study of 2,002 patients’ medical records. J Endod 2010; 36: 797– 800.
  • 23. Shokri A, Eskandarloo A, Noruzi-Gangachin M, Khajeh S. Detection of root perforations using conventional and digital intraoral radiography, multidetector computed tomography and cone beam computed tomography. Restor Dent Endod 2015; 40: 58-67.
  • 24. Koehne T, Zustin J, Amling M, Friedrich RE. Radiological and Histopathological Features of Internal Tooth Resorption. In Vivo 2020; 34: 1875- 1882.
  • 25. Bastos JV, Queiroz VHF, FelÍcio DBA, et al. Imaging diagnosis of external root resorption in replanted permanent teeth. Braz Oral Res. 2020; 34: e067.
Ege Üniversitesi Diş Hekimliği Fakültesi-Cover
  • ISSN: 1302-7476
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1979
  • Yayıncı: Ege Üniversitesi