Embriyoner gelişimde transkripsiyonel ağlar ve hücre sinyalleri

Fare blastokistindeki üç germ tabakasının oluşumu, hücrelerin gelişim sürecinin erken dönemindeki davranışlarını, hangi iç ve dış etkenlerin bu süreçte rol oynadığı ve bunlar arasındaki etkileşimleri çalışmak için önemli bir model sistemi sağlamaktadır. Stabi l polarize dış epitelin oluşmasıyla birlikte, erken yarıklanma aşamasının iç ve dış hücreleri arasındaki sinyal farklılıkları iç hücre kitlesi (ICM), embriyoblast ve trofoektodermin kurulmasına yol açar. Embriyonik gelişim aşamalarında gerçekleşen hücre polaritesi, hücre pozisyonu, lokal mikroçevre etkileri, transkripsiyonel faktörler ve bunların karşılıklı etkileşimlerini içeren süreçler hücre kaderinin belirlenmesinde rol oynamaktadır. Bu süre içerisinde fare gelişiminin yavaş ilerlemesi, kültür embriyo y eteneği, canlı hücre görüntüleme araçlarının geliştirilmesi ve gen ekspresyonlarını modifiye edebilme yeteneği bu süreçlerin aydınlatılabilmesini sağlamaktadır.

Transcriptional networks and cell signals in embryonic development

The formation of the three lineages of the mouse blastocyst provides an important model system to study behavior of cells in the early stage of the development process, internal and external factors which play a role in this process and the interaction between them. With the establishment of a stable polarized outer epithelium, the signal differences between the inner and outer cells of the early cleavage stages lead to the establishment of the inner cell mass (embryoblast) and the trophectoderm. Events in the stages of embryonic development including cell polarity, cell position, effects of local microenvironment, transcriptional factors and their interaction processes are involved in determining cell fate. The slow pace of development of the mouse during this time, the ability to culture embryos, the development of tools for live cell imaging and the ability to modify the expression of genes that enable the elucidation of the process.

Kaynakça

1. Stephenson RO, Rossant J,Tam PPL. Intercellular interactions, p osition, and p olarity in e stabli shing blastocyst c ell lineages and embryonic axes . Cold Spring Harb Perspect Biol 2012;4(11):a008235.

2. Palmieri SL, Peter W, Hess H, Scholer HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 1994;166(1):259 -67.

3. Dietrich JE, Hiiragi T. Stochastic patterning in the mouse preimplantation embryo. Development 2007;134(23):4219 -31.

4. Niwa H, Toyooka Y, Shimosato D, et al. Interaction b etween Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005;23(5):917 -29.

5. Ralston A, Rossant J. Cdx2 acts downstream of cell polarization to cell -autonomously promote trophectoderm fate in the early Mouse embryo. Dev Biol 2008;313(2):614 -29.

6. Strumpf D, Mao CA, Yamanaka Y, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005;132(9):2093 -102.

7. Yagi R, Kohn MJ, Karavanova I, et al. Transcription factor TEAD4 sp ecifies the trophectoderm lineage at the beginning of mammalian development. Development 2007;134(21):3827 -36.

8. Nishioka N, Yamamoto S, Kiyonari H, et al. Tead4 is required for specification of trophectoderm in pre -implantation mouse embryos. Mech Dev 2008 ;125(3 -4):270 -83.

9. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95(3):379 -91.

10. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell -Ba dge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17(1):126 -40.

11. Chambers I, Silva J, Colby D, et al. Nanog safeguards pluripotency and mediates germline development. Nature 2007;450(7173):1230 -34.

12. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;113(5):631 -42.

13. Xu F, Li H, Jin, T. Cell type specific autoregulation of the caudalrelated homeobox gene Cdx2/3. J Bi ol Chem 1999; 274(48) :34310 -16.

14. Beland M, Pilon N, Houle M, et al. Cdx1 autoregulation is governed by a novel Cdx1 -LEF1 transcription complex. Mol Cell Biol 2004; 24(11) :5028 -38.

15. Johnson MH, McConnell JM. Lineage allocation and cell polarity during mouse emb ryogenesis. Semin Cell Dev Biol 2004; 15(5):583 -97.

16. Pauken CM, Capco DG. The expression and stage -specific localization of protein kinase C isotypes during mouse preimplantation development. Dev Biol 2000; 223(2) :411 -21.

17. Plusa B, Frankenberg S, Chalmers A, et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci 2005; 118(Pt 3) :505 -15.

18. Louvet S, Aghion J, Santa -Maria A, Mangea P, Maro B. Ezrin becomes restricted to outer cells following as ymmetrical division in the preimplantation mouse embryo. Dev Biol 1996; 177(2) :568 -79.

19. Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet -Vallee S. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8 - cell stage during compaction. Dev Biol 2005; 282(2) :307 -19.

20. Wodarz A. Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Curr Opin Cell Biol 2005; 17(5):475 -81.

21. Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: Expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16 - and 32 -cell embryos. Dev Biol 2008; 322(1) :133 -44.

22. Nishioka N, Inoue K, Adachi K, et al. The Hippo signaling path way components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 2009;16(3):398 -410.

23. Frankenberg S, Gerbe F, Bessonnard S, et al. Primitive endoderm differentiates via a three -step mechanism involving Na nog and RTK signaling. Dev Cell 2011;21(6):1005 -13.

24. Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2 -MAPK pathway. Dev Cell 2006;10(5):615 -24.

25. Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka -Goetz M. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci 2010;107(4):6364 -69.

26. Niakan KK, Ji H, Maehr R, et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self -renewal. Genes Dev 2010;24(3):312 -26.

27. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. Distinct sequential cell behaviours d irect primitive endoderm formation in the mouse blastocyst. Development 2008;135(8):3081 -91.

28. Tam PPL, Loebel DAF. Gene function in mouse embryogenesis: Get set for gastrulation. Nature Reviews Genetics 2007; 8(5): 368 -81 .

29. Rossant J,Tam PPL. Blastocyst lin eage formation, early embryonic asymmetries and axis patterning in the mouse. Development 2009;136(5):701 -13.

30. Torres -Padilla ME, Richardson L, Kolasinska P, Meilhac SM, Luetke -Eversloh MV, Zernicka -Goetz M. The anterior visceral endoderm of the mouse embryo is established from both preimplantation precursor cells and by de novo gene expression after implantation. Dev Biol 2007;309(1):97 -112.

31. Takaoka K, Yamamoto M, Shiratori H, et al. The mouse embryo autonomously acquires anteriorposterior polarity at impl antation. Dev Cell 2006; 10(4):451 -9.

32. Lu CC, Brennan J, Roberston EJ. From fertilization to gastrulation: Axis formation in the mouse embryo. Curr Opin Genet Dev 2001; 11(4):384 -92.

33. Zernicka -Goetz M. Patterning of the embryo : The first spatial decisions in the life of a mouse. Development 2002; 219(4) :815-29.

34. Futaki S, Hayashi Y, Emoto T, Weber CN, Sekiguchi K. Sox7 plays crucial roles in parietal endoderm differentiation in F9 embryonal carcinoma cells through regulating Gata -4 and Gata -6 expression. Mol Ce ll Biol 2004; 24(23) :10492 -503.

35. Duncan SA, Nagy A, Chan W. Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: Tetraploid rescue of Hnf-4(-/-) embryos. Development 1997; 124(2):279 -87.

36. Mesnard D, Guzman -Ayala M, Constam DB. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 2006; 133(13) :2497 -505.

37. Rivera -Perez JA, Mager J, Magnuson T. Dynamic morphogenetic events characterize the mouse viscera l endoderm. Dev Biol 2003 ; 261(2):470 -87.

38. Donnison M, Beaton A, Davey HW, Broadhurst R, L’Huillier P, Pfeffer PL. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 2005 ;132(10):2299 -308.

39. Perea -Gomez A , Lawson KA, Rhinn M , et al. OTX2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Developm ent 2001; 128(5):753 -65.

40. Iratni R, Yan YT, Chen C, et al. Inhibition of excess nodal signaling during mouse gastrulation by the transcriptional corepressor DRAP1. Science 2002; 2 98(5600):1996 -9.

Kaynak Göster