Sığ Kriyojenik İşlemin AISI 410 Paslanmaz Çeliğin Mekanik Özelliklerine Etkisinin Araştırılması

Kriyojenik işlem malzemelere uygulanan ve malzemelerin tribolojik özelliklerini geliştiren ve geleneksel ısılişlemi tamamlayıcı veya geleneksel ısıl işleme alternatif ucuz bir ısıl işlemdir. Malzemelere uygulanankriyojenik işlemin, kalıntı östeniti martenzite dönüştürdüğü, daha homojen mikroyapı sağladığı, aşınmadirencini, sertlik ve elektrik iletkenliğinde artış sağladığı bilinmektedir. Bu çalışmada sığ kriyojenik işlemin AISI410 paslanamaz çeliğin mikroyapısına, sertliğine ve elektrik iletkenliğine etkisi araştırılmıştır. Sığ kriyojenikişlem 4 farklı (24, 48, 72 ve 96 saat) bekleme sürelerinde uygulanarak bekleme süresinin etkisi tespit edilmiştir.İşlem görmemiş numuneler (N0) referans alınarak sonuçlar değerlendirilmiştir. Elde edilen sonuçlara göre sığkriyojenik işlemin AISI 410 paslanmaz çeliğin mikroyapısını düzenleyerek homojen hale getirdiğigözlemlenmiştir. Sığ kriyojenik işlem N4 numunenin sertliğini, N0 numuneye göre yaklaşık %4 arttırmıştır.Ayrıca elektrik iletkenliğinde %300 artış sağlanmıştır. Sertlik ve elektrik iletkenliğine en fazla etki 96 saatbekleme süresinde elde edilmiştir. Genel olarak sığ kriyojenik işlemin, uygun bekleme süresinde, paslanmazçeliğin sertlik ve elektrik iletkenliğine olumlu etkiye sahip olduğu görülmüştür.

Investigation of the Effect of Shallow Cryogenic Treatment on the Mechanical Properties of 410 Stainless Steel

Cryogenic processing is a cheap heat treatment applied to materials and improving the tribological properties of materials and complementing conventional heat treatment. It is known that the cryogenic process applied to the materials transforms the residual austenite martensite, provides a more homogeneous microstructure, provides abrasion resistance, increases the hardness and electrical conductivity. In this study, the effect of shallow cryogenic process on microstructure, hardness and electrical properties of AISI 410 stainless steel was investigated. Shallow cryogenic processing was performed at 4 different waiting times (24, 48, 72 and 96 hours) to determine the effect of waiting time. According to the results, it was observed that the shallow cryogenic process regulated the microstructure of AISI 410 stainless steel and homogenized. The shallow cryogenic process increased the hardness of the sample by about 4%. In addition, the electrical conductivity increased by 300%. The maximum impact on hardness and electrical conductivity was obtained at a waiting time of 96 hours. In general, the shallow cryogenic process has been found to have a positive effect on the hardness and electrical conductivity of the stainless steel in the appropriate waiting time.

___

  • [1] K. Gu, J. Wang, and Y. Zhou, "Effect of cryogenic treatment on wear resistance of Ti–6Al–4V alloy for biomedical applications," journal of the mechanical behavior of biomedical materials, vol. 30, pp. 131-139, 2014.
  • [2] K. Amini, A. Akhbarizadeh, and S. Javadpour, "Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic heat treatment," Vacuum, vol. 86, no. 10, pp. 1534-1540, 2012.
  • [3] S. Akıncıoğlu, H. Gökkaya, and İ. Uygur, "The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of Hastelloy C22 based on Taguchi method," The International Journal of Advanced Manufacturing Technology, vol. 82, no. 1-4, pp. 303-314, 2016.
  • [4] P. Baldissera and C. Delprete, "Deep cryogenic treatment: a bibliographic review," The Open Mechanical Engineering Journal, vol. 2, no. 1, 2008.
  • [5] V. Firouzdor, E. Nejati, and F. Khomamizadeh, "Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill," Journal of materials processing technology, vol. 206, no. 1-3, pp. 467-472, 2008.
  • [6] S. Akincioğlu, H. Gökkaya, and İ. Uygur, "A review of cryogenic treatment on cutting tools," The International Journal of Advanced Manufacturing Technology, journal article vol. 78, no. 9, pp. 1609-1627, June 01 2015.
  • [7] Y. Arslan, I. Uygur, and A. Jazdzewska, "The effect of cryogenic treatment on microstructure and mechanical response of AISI D3 tool steel punches," Journal of Manufacturing Science and Engineering, vol. 137, no. 3, p. 034501, 2015.
  • [8] A. Çiçek, F. Kara, T. Kivak, and E. Ekici, "Evaluation of machinability of hardened and cryotreated AISI H13 hot work tool steel with ceramic inserts," International Journal of Refractory Metals and Hard Materials, vol. 41, pp. 461-469, 2013/11/01/ 2013.
  • [9] F. Kara, A. Çiçek, and H. Demir, "Multiple Regression and ANN Models for Surface Quality of Cryogenically-Treated AISI, 52100 Bearing Steel," J. Balkan Tribol. Assoc, vol. 19, no. 4, pp. 570-584, 2013.
  • [10] P. Corengia, G. Ybarra, C. Moina, A. Cabo, and E. Broitman, "Microstructure and corrosion behaviour of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel," Surface and Coatings Technology, vol. 187, no. 1, pp. 63-69, 2004/10/01/ 2004.
  • [11] Y. ARSLAN and A. ÖZDEMİR, "Farklı Sürelerde Kriyojenik İşlem Uygulanmış Aisi D3 Soğuk İş Takım Çeliği Zımbalarda Aşınma Davranışları Ve Takım Ömrü," İleri Teknoloji Bilimleri Dergisi, vol. 2, no. 3, pp. 87-99, 2013.
  • [12] I. Gunes, A. Cicek, K. Aslantas, and F. Kara, "Effect of Deep Cryogenic Treatment on Wear Resistance of AISI 52100 Bearing Steel," Transactions of the Indian Institute of Metals, journal article vol. 67, no. 6, pp. 909-917, December 01 2014.
  • [13] E. NAS and S. AKINCIOĞLU, "Kriyojenik İşlem Görmüş Nikel Esaslı Süper Alaşımın Elektro-Erozyon İşleme Performansı Optimizasyonu," Academic Platform Journal of Engineering and Science, vol. 6-1, pp. 1-7, 2019.
  • [14] P. Baldissera and C. Delprete, "Deep cryogenic treatment of AISI 302 stainless steel: Part II– Fatigue and corrosion," Materials & Design, vol. 31, no. 10, pp. 4731-4737, 2010.
  • [15] T. H. Myeong, Y. Yamabayashi, M. Shimojo, and Y. Higo, "A new life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel1This work was carried out as a part of the Ph.D. thesis of one of the authors (T.H.M.).1," International Journal of Fatigue, vol. 19, no. 93, pp. 69-73, 1997/06/01/ 1997.
  • [16] J. Darwin, D. M. Lal, and G. Nagarajan, "Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method," Journal of materials processing technology, vol. 195, no. 1-3, pp. 241-247, 2008.
  • [17] H. Gürhan, İ. Şahin, H. Çinici, and T. FINDIK, "Kriyojenik işlemin SAE 4140 çeliğin mekanik özellikleri üzerine etkisi," Selçuk-Teknik Dergisi, vol. 13, no. 2, pp. 25-37, 2014.
  • [18] J. D. Darwin, D. Mohan Lal, and G. Nagarajan, "Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method," Journal of Materials Processing Technology, vol. 195, no. 1, pp. 241-247, 2008/01/01/ 2008.
  • [19] C. Gogte, K. M. Iyer, R. Paretkar, and D. Peshwe, "Deep subzero processing of metals and alloys: evolution of microstructure of AISI T42 tool steel," Materials and Manufacturing Processes, vol. 24, no. 7-8, pp. 718-722, 2009.
  • [20] L. P. Singh and J. Singh, "Effects of cryogenic treatment on the cutting tool durability," International Journal of Design and Manufacturing Technology (IJDMT), vol. 3, no. 1, pp. 11-23, 2012.
  • [21] N. S. Kalsi, R. Sehgal, and V. S. Sharma, "Cryogenic treatment of tool materials: a review," Materials and Manufacturing Processes, vol. 25, no. 10, pp. 1077-1100, 2010.
  • [22] K. S. Bal, "Performance appraisal of cryo‐treated tool by turning operation," 2012.
  • [23] S. Rout, A. Behera, and S. Mishra, "Assurance of Quality Improvement for Tool Steel by Cryo-processing," 2012.
  • [24] M. Dogra, V. S. Sharma, A. Sachdeva, N. M. Suri, and J. S. Dureja, "Performance evaluation of CBN, coated carbide, cryogenically treated uncoated/coated carbide inserts in finish-turning of hardened steel," The International Journal of Advanced Manufacturing Technology, vol. 57, no. 5-8, pp. 541-553, 2011.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü