A Comparative Simulations on the Electromagnetic and Mechanical Effects of the Various Inductor Core Forms for DC-DC Converter Circuits

DC-DC power electronics converters are used in many applications such as electrical vehicles, energy storage systems, renewable energy sources. The inductors designed for a specific frequency and current level have significant impact on converter performance. In this study, an inductor is designed for a specific frequency and current value with some common core geometric structures called EE, block, pot and toroidal. Since inductors operate at high frequency values, the Kool-Mu which is a kind of powder core is selected. The Kool-Mu has distributed homogeneous air gaps and is used in inductor designs that saturation is not desired. Inductors are designed for EE core, toroidal core, pot core and block core structures. Electromagnetic modelling of these inductors designed for different core structures are carried out with finite element analysis (FEA), and inductance stability, core and winding losses, mechanical specifications and flux distributions have been reported comparatively. In addition, some suggestions are derived in core structure definitions for DC-DC converter inductor design.

DA-DA Dönüştürücü Devreleri için Çeşitli İndüktör Nüve Şekillerinin Elektromanyetik ve Mekanik Etkileri Üzerine Karşılaştırmalı Bir Benzetim

___

  • [1] H.C. Sartori, J.E. Baggio, and J.R. Pinheiro, “A Comparative Design of an Optmized Boost Inductor Taking Into Account Three Magnetic Materials Technologies: Volume, Cost and Efficiency Analysis”, 10th IEEE/IAS International Conference on Industry Applications (INDUSCON), Fortaleza, Brazil, 2012.
  • [2] Y. Dhahri, S. Ghedira, and R. Zrafi, “The geometrical structure effect of the integrated power inductor for DC-DC converter”, IEEE International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, Tunisia, 2017, pp.120-124.
  • [3] R. Jensen, and C. R. Sullivan, “Optimal Core Dimensional Ratios for Minimizing Winding Loss in High-Frequency Gapped-Inductor Windings”, IEEE Applied Power Electronics Conference, , 2003, pp.1164–1169.
  • [4] M.S. Rylko, K.J. Hartnett, J.G. Hayes, and M.G. Egan, “Magnetic Material Selection for High Power High Frequency Inductors in DC-DC Converters”, IEEE Twenty-Fourth Annual Applied Power Electronics Conference and Exposition, (APEC), Washington DC, 15-19 Feb. 2009, pp.2043–2049.
  • [5] E. Agheb and H.K. Høidalen, “Modification of empirical core loss calculation methods including flux distribution”, IET Electr. Power Appl., Vol. 7, Issue. 5, pp.381–390, 2013.
  • [6] S. Balci, M.B. Bayram, N. Altin, and I. Sefa, “Inductance and Loss Behaviors of Medium Frequency High Power Gapped Core Inductors”, 5th International Conference on Advanced Technology&Sciences (ICAT), Istanbul, 9-12 May 2017.
  • [7] I. Sefa, N. Altin, S. Ozdemir, S. Balci, M.B. Bayram, and H. Kelebek, “Design and Loss Analysis of LCL Filter Inductors for Two-Level and Three-Level Inverters”, IEEE 22nd International Conference on Applied Electronics, Pilsen, Czech Republic, 5-6 Sept. 2017.
  • [8] I. Sefa, S. Balci, N. Altin, and S. Ozdemir, “Comprehensive analysis of inductors for an interleaved buck converter”, IEEE 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, , 4-6 Sept. 2012, pp-DS2b.5-1 - DS2b.5-7.
  • [9] M.K. Kazimierczuk, “High-frequency magnetic components”, Second Edition, Wiley, Ohio, USA, Chapter 10, 2014, pp.605-607.
  • [10] C.W. T. McLyman, and A.P. Wagner, “Designing high frequency AC inductors using ferrite and molypermalloy powder cores (MPP)”, IEEE Power Electronics Specialists Conference (ESA SP-230), 24-28 June 1985.
  • [11] Magnetics. (2018, 31 December). Powder Core Material KoolMu26u datasheet. [Online]. Access: https://www.mag-inc.com/Media/Magnetics/Datasheets/0078074A7.pdf
  • [12] Ferroxcube. (2018, 31 December). Powder Core Material Pot Core 6656 datasheet, [Online]. Access: www.ferroxcube.com/FerroxcubeCorporateReception
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü