Yalıtkan/Yarıiletken Ara Yüzeyin Kendiliğinden Biriken Tek katman Tekniği ile Organik Alan Etkili Transistör (OFET) Performansına Etkisi

Kendiliğinden Birikme, yüzeylerin fonksiyonelleştilmesi için etkili bir teknilerden biridir. Kendiliğinden biriken moleküller (Self-assembled monolayers, SAM), iletken/yarıiletken ve yalıtkan/yarıiletken yüzeyler üzerine oluşturulabilir ve çeşitli teknolojik uygulamalarda kullanılmaktadır. Bu çalışmada, kendiliğinden biriken tek katman molekülleri kullanılarak Organik Alan Etkili Transistörlerin yalıtkan/yarıiletken ara yüzeyi fonksiyonelleştirilerek aygıt performansı arttırılması amaçlanmıştır.

The Effect of the Insulator/Semiconductor Interface on Transistor Performance with Self-Assembly Monolayer Technique

Self-assembly is one of the most effective technıques for surface functionalization. Self-assembled monolayers (SAMs) can be formed on conductor/semiconductor and dielectric/semiconductor surfaces, and have been used in a variety of technological applications. In this work aims to increased performance of Organic Field Effect Transistors using self-assembled monolayers molecules on dielectric/semiconductor surface.

___

  • [1] M. Riordan, L. Hoddeson and C. Herring, "The invention of the transistor", Reviews of Modern Physics, vol. 71, no. 2, pp. 336-345, 1999.
  • [2] J. Bardeen and W. H. Brattain, "Three-electrode circuit element utilizing semiconductive materials", U.S., 2524034A, 1950.
  • [3] J. Bardeen and W. H. Brattain, "The transistor, a semi-conductor triode", Phys. Rev., vol. 74, no. 2, pp. 230-231, 1948.
  • [4] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x.", J. Chem. Soc. Chem. Commun., no. 16, pp. 578–580, 1977.
  • [5] F. Ebisawa, T. Kurokawa and S. Nara, "Electrical properties of polyacetylene/polysiloxane interface", J. Appl. Phys., vol. 54, no. 6, pp. 3255-3259, 1983.
  • [6] A. Tsumura, H. Koezuka and T. Ando, "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film", Appl. Phys. Lett., vol. 49, no. 18, pp. 1210-1212, 1986.
  • [7] Sciencedirect, (19 Ekim 2018). [Online]. Erişim: www.sciencedirect.com
  • [8] H. Sirringhaus, "25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon", Adv. Mater., vol. 26, pp. 1319-1335, 2014.
  • [9] I. Kymissis, C.D. Dimitrakopoulos and S. Purushothaman, "High performance bottom electrode organic thin-film transistors", IEEE Trans. Electron Device, vol. 48, no. 6, pp. 1060-1064, 2001.
  • [10] H. Klauk, Organic Electronics, Materials, Manufacturing and Applications, 2nd ed., Weinheim, Germany: Wiley-VCH, 2006, ch. 1, pp. 1-32.
  • [11] H. Klauk, "Organic thin-film transistors", Chem. Soc. Rev., vol. 39, no. 7, pp. 2643-2666, 2010.
  • [12] W. L. A. Brooks and B. S. Sumerlin, "Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine", Chem. Rev., vol. 116, no. 3, pp. 1375-1397, 2016.
  • [13] K. Lacina, P. Skládal and T. D. James, "Boronic acids for sensing and other applications - a mini-review of papers published in 2013", Chem. Cent. J., vol. 8, no.1, pp. 60, 2014.
  • [14] T. Yılmaz Alıç, "The effect of phenylboronic acid-based self-assembled monolayers on the performance of organic field-effect transistors (OFETs)", Turk. J. Phys., vol. 43, pp. 207 – 212, 2019.
  • [15] D. Akın Kara, K. Kara, G. Oylumluoglu, M. Z. Yigit, M. Can, J. J. Kim, E. K. Burnett, D. L. Gonzalez Arellano, S. Buyukcelebi, F. Ozel, O. Usluer, A. L. Briseno and M. Kus, "Enhanced Device Efficiency and Long-Term Stability via Boronic Acid-Based Self-Assembled Monolayer Modification of Indium Tin Oxide in a Planar Perovskite Solar Cell", ACS App. Mat. & Int., vol. 10, no. 35, pp. 30000-30007, 2018.
  • [16] J.-I. Anzai, "Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives", Mat. Sci. and Eng. C., vol. 67 , pp. 737-746, 2016.
  • [17] T. Minami, T. Minamiki, Y. Hashima, D. Yokoyama, T. Sekine, K. Fukuda, D. Kumaki and S. Tokito, "An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water", Chem. Comm., vol. 50, no. 98, pp. 15613-15615, 2014.
  • [18] Y. Egawa, T. Seki, S. Takahashi and J .-i. Anzai, "Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives", Mat. Sci. and Eng. C., vol. 31, no. 7, pp. 1257-1264, 2011.
  • [19] J. W. Ward, "Enhancing The Electrical Performance Of Organic Field-Effect Transistors Through Interface Engineering, Physics", PhD Thesis, Wake Forest University, North Carolina, USA, 2015.
  • [20] G. Horowitz, "Interfaces in organic field-effect transistors", Adv. Polym. Sci., vol. 223, pp. 113-153, 2010.
  • [21] N. K. Za'aba, J. J. Morrison and D. M. Taylor, "Effect of relative humidity and temperature on the stability of DNTT transistors: A density of states investigation", Org. Elec., vol. 45, pp. 174-181, 2017.
  • [22] U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J. B. Nimoth and H. Klauk, "Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability", Org. Elec., vol. 12, no. 8, pp. 1370-1375, 2011.
  • [23] A. Kyndiah, A. Ablat, S. Guyot-Reeb, T. Schultz, F. Zu, N. Koch, P. Amsalem, S. Chiodini, T. Yilmaz Alic, Y. Topal, M. Kus, L. Hirsch, S. Fasquel and M. Abbas, "A Multifunctional Interlayer for Solution Processed High Performance Indium Oxide Transistors", Sci. Rep., vol. 8, no.1, pp. 10946, 2018.
  • [24] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid and G. Schitter, "Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator", J. of App. Phys., vol. 96, no. 11, pp. 6431-6438, 2004.
  • [25] M. Aghamohammadi, R. Rödel, U. Zschieschang, C. Ocal, H. Boschker, R. T. Weitz, E. Barrena and H. Klauk, "Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects", ACS App. Mat. & Int., vol. 7, no. 41, pp. 22775-22785, 2015.
  • [26] K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa and T. Kamata, "Threshold voltage stability of organic field-effect transistors for various chemical species in the insulator surface", App. Phys. Lett., vol. 91, no. 19, pp. 192112, 2007.
  • [27] M. H. Yoon, C. Kim, A. Facchetti and T. J. Marks, "Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors", J. Am. Chem. Soc., vol. 128, pp. 12851–12869, 2006.
  • [28] L. Jong-Son, N. Kee-Soo and L. Choochon, "Determination of the Interface Trap Density in Metal Oxide Semiconductor Field-Effect Transistor through Subthreshold Slope Measurement", Japanese J. of App. Phys., vol. 32, no. 10R, pp. 4393, 1993.
  • [29] R. García and R. Pérez, "Dynamic atomic force microscopy methods", Sur. Sci. Rep., vol. 47, no.6-8, pp. 197-201, 2002.
  • [30] E. P. Plueddemann, Silane Coupling Agents, 2nd ed., New York, US: Springer, 1991, ch. 4, pp. 79-114.