Elektrokimyasal Biyosensörlerin Geliştirilmesinde Alkanetiol Kendiliğinden Oluşan Tek Katmanlar ile Peptid Nükleik Asit (PNA) Probu

Peptid Nükleik Asit (PNA) içeren alkanetiol kendiliğinden oluşan tek katmanlar (SAM), elektrokimyasal biyosensörlerde prob olarak önerilmiştir. Bu makale, PNA probunun optimizasyonunu iki farklı SAM konsantrasyonu, immobilizasyon sıcaklığı ve iki aşamalı immobilizasyon prosesi kullanarak araştırmıştır. Alkanetiol kendiliğinden oluşan tek katmanlar ile PNA prob immobilizasyonu ve cDNA (tamamlayıcı DNA) hibridizasyonu AC voltametre metodu ile ölçülmüştür. Yüksek iyonik kuvvet konsantrasyonunda, cDNA hibridizasyonundan sonra formal potansiyelde küçük negatif kayma (-17 mV) meydana gelmiştir

Self -Assembled Monolayers with Peptide Nucleic Acid (PNA) Probe to Develop Electrochemical Biosensors

Alkanethiol self-assembled monolayers (SAMs) with Peptide Nucleic Acid (PNA) were proposed as a novel probe design in electrochemical biosensors. This paper investigates the optimization of PNA probe by using two different concentrations of SAMs, immobilization temperature, and two-stage immobilization process. Alkanethiol self-assembled monolayers with PNA probe immobilization and cDNA (complementary DNA) hybridization were measured via AC voltammetry method. The small negative shift in formal potential (-17 mV) was occurred after cDNA hybridization at high ionic strength concentration.

___

  • [1]. J. Wang, “Electrochemical nucleic acid biosensors”, Analytica Chimica Acta, vol. 469, pp. 63–7, 2002.
  • [2]. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, “Electrochemical Biosensors - Sensor Principles and Architectures”, Sensors, vol. 8, pp. 1400-1458, 2008.
  • [3]. G. Hernandez-Vargas, J. E. Sosa-Hernández, S. Saldarriaga-Hernandez, A. M. Villalba-Rodríguez, R. Parra-Saldivar, H. M. N. Iqbal, “Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants”, Biosensors, vol. 8, pp. 29, 2018.
  • [4]. H. Aoki, P. Buelmann, and Y. Umezawa, “Electrochemical Detection of a One-Base Mismatch in an Oligonucleotide Using Ion-Channel Sensors with Self-Assembled PNA Monolayers”, Electroanalysis, vol. 12, no. 16, pp. 1272-1276, 2000.
  • [5]. J. D. Bartl, M. Stutzmann, A. Cattani-Scholz, M. Tornow, “Synthesis and Optimization of Organic Sensing Platforms for Label-free DNA Detection”, Proceedings of the 12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2017, pp. 118-121.
  • [6]. P. Teengam, W. Siangproh , A. Tuantranont , C. S. Henry, T. Vilaivan, O. Chailapakul, “Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus”, Analytica Chimica Acta, vol. 952, pp. 32-40, 2017.
  • [7]. O. Brandt and J. D. Hoheisel, “Peptide nucleic acids on microarrays and other biosensors”, TRENDS in Biotechnology, vol. 22, no.12, pp. 617-622, 2004.
  • [8]. S. Reisberg, L.A. Dang, Q.A. Nguyen, B. Piro, V. Noel, P.E. Nielsen, L.A. Le, M.C. Pham, “Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer”, Talanta, vol. 76, pp. 206-210, 2008.
  • [9]. J. Justin Gooding and N. Darwish, “The Rise Of Self-Assembled Monolayers For Fabricating Electrochemical Biosensors—An Interfacial Perspective”, The Chemical Record, vol. 12, pp. 92–105, 2012.
  • [10]. B. Kazakeviciene, G. Valincius, G. Niaura, M. Kazemekaite, J. Straukas, V. Razumas, “Electron transfer through ferrocene-terminated self-assembled monolayers”, Biologija, no. 4, pp. 13-16, 2003.
  • [11]. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chem. Rev., vol. 105, pp. 1103-1169, 2005.
  • [12]. P. Diao, M. Guo, D. Jiang, Z. Jia, X. Cui, D. Gu, R. Tong, B. Zhong, “Fractional coverage of defects in self-assembled thiol monolayers on gold”, Journal of electroanalytical chemistry, vol. 480, pp. 59-63, 2000.
  • [13]. Y. Yourdshahyan and A. M. Rappe, “Structure and energetics of alkanethiol adsorption on the Au(111) surface”, J. Chem. Phys., vol.117, no.2, pp. 826-833, 2002.
  • [14]. K. Tsugimura, H. Ohnuki, H. Endo, D. Tsuya, M. Izumi, “Protein-G-based human immunoglobulin G biosensing by electrochemical impedance spectroscopy”, Jpn. J. Appl. Phys., vol. 55, 02BE06, 2016.
  • [15]. Z. B. Bahsi Oral, "Application of mixed self-assembled monolayers (Mixed SAMs) for nucleic acid detection", Measurement, vol. 94, pp. 1-4, 2016.
  • [16]. M. Y. Ho, P. Li, P. Estrela, S. Goodchild, P. Migliorato, “Detection of molecular interactions with modified ferrocene self-assembled monolayers”, J. Phys. Chem., vol. 114, pp. 10661-10665, 2010.
  • [17]. O'Connor S.D., Olsen G.T., Creager S.E., “A Nernstian electron source model for the ac voltammetric response of a reversible surface redox reaction using large-amplitude ac voltages”, J. Electroanal. Chem., vol. 466, pp. 197-202, 1999.
  • [18]. P.A. Lewis, Z.J. Donhauser, B. A. Mantooth, R.K. Smith, L.A. Bumm, K.F. Kelly, P.S. Weiss, “Control and placement of molecules via self-asembly”, Nanotechnology, vol. 12, pp. 231-237, 2001.
  • [19]. Creager S.E., Rowe G.K., “Ion Solvation and Double-Layer Effects on Redox Reactions in Self-Assembled Monolayers. Alkanethiolates and Ferrocenylalkanethiolates on Gold”, J. Electroanal. Chem., vol. 420, pp. 291-299, 1997.