Gömülü sistemlerde kaotik haritalar kullanılarak gerçek zamanlı görüntü şifreleme uygulaması

Teknolojinin ilerlemesi, multimedya ve iletişim araçlarının genişlemesinde veri aktarımı sürecini hızlandırmaktadır. Dijital görüntüler, veri aktarımlarında en sık kullanılan veri türlerinden biridir. Bu görüntüler kişisel ve gizli bilgiler içerebilir. Görüntülerin genel bir ağ üzerinden gönderildiğinde, alıcı tarafa şifreli olarak iletilmesi bilgi güvenliği açısından çok önemlidir. Kaos tabanlı yöntemler en yaygın olarak kullanılan görüntü şifreleme teknikleridir. Bu çalışmada, Henon ve Tent kaotik haritaları kullanılarak Jetson Tx2 ve Jetson Nano gömülü sistemler üzerinde gerçek zamanlı olarak karıştırma ve yayılma tabanlı bir görüntü şifreleme yöntemi tasarlanmış ve uygulanmıştır. Uygulanan görüntü şifreleme sisteminin performansını değerlendirmek için literatürde en sık kullanılan yöntemler histogram analizi, korelasyon analizi ve anahtar duyarlılık analizi gibi güvenlik testlerine tabi tutulmaktadır. Ayrıca önerilen sistem, iki farklı gömülü sistemin şifreleme ve şifre çözme süreleri karşılaştırılarak değerlendirilmiştir. Sonuçlar, önerilen görüntü şifreleme sisteminin oldukça güvenli olduğunu açıkça göstermektedir.

Implementation of real-time image encryption using chaotic maps in embedded systems

The advancement of technology has sped up the process of data transfer in the expansion of multimedia and communication tools. Digital images are one of the most frequently used data types in data transfers. These images may contain personal and confidential information. When images are sent over a public network, it is crucial for information security to transmit them to the receiving party in encryped format. Chaos-based methods are the most commonly used image encryption techniques. In this study, a confusion and diffusion based image encryption method is designed and implemented in real time on Jetson Tx2 and Jetson Nano embedded systems using Henon and Tent chaotic maps. To evaluate the performance of the implemented image encryption system, the most frequently used images in the literature are subjected to security tests such as histogram analysis, correlation analysis, and key sensitivity analysis. Moreover, the proposed system is evaluated by comparing the encryption and decryption times of two different embedded systems. The results clearly demonstrate that proposed image encryption system has a highly secure.

___

  • Nadhom, M., & Loskot, P. (2018). Survey of public data sources on the Internet usage and other Internet statistics. Data in brief, 18, 1914-1929.
  • Belazi, A., Abd El-Latif, A. A., & Belghith, S. (2016). A novel image encryption scheme based on substitution-permutation network and chaos. Signal Processing, 128, 155-170.
  • Baker, G. L., & Gollub, J. P. (1996). Chaotic dynamics: an introduction. Cambridge university press.
  • Lian, S. (2009). Efficient image or video encryption based on spatiotemporal chaos system. Chaos, Solitons & Fractals, 40(5), 2509-2519.
  • Gao, T., & Chen, Z. (2008). Image encryption based on a new total shuffling algorithm. Chaos, solitons & fractals, 38(1), 213-220.
  • Wang, X. Y., & Yu, Q. (2009). A block encryption algorithm based on dynamic sequences of multiple chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 14(2), 574-581.
  • Teh, J. S., Alawida, M., & Sii, Y. C. (2020). Implementation and practical problems of chaos-based cryptography revisited. Journal of Information Security and Applications, 50, 102421.
  • Veena, G., & Ramakrishna, M. (2021). A survey on image encryption using chaos-based techniques. International Journal of Advanced Computer Science and Applications, 12(1).
  • Kocarev, L., & Jakimoski, G. (2001). Logistic map as a block encryption algorithm. Physics Letters A, 289(4-5), 199-206.
  • Tong, X. J., Wang, Z., Liu, Y., Zhang, M., & Xu, L. (2015). A novel compound chaotic block cipher for wireless sensor networks. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 120-133.
  • El Assad, S., Farajallah, M., & Vladeanu, C. (2014, May). Chaos-based block ciphers: An overview. In 2014 10th International Conference on Communications (COMM) (pp. 1-4). IEEE.
  • Chen, G., Mao, Y., & Chui, C. K. (2004). A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons & Fractals, 21(3), 749-761.
  • Hraoui, S., Gmira, F., Jarar, A. O., Satori, K., & Saaidi, A. (2013, May). Benchmarking AES and chaos based logistic map for image encryption. In 2013 ACS International Conference on Computer Systems and Applications (AICCSA) (pp. 1-4). IEEE.
  • Hénon, M. (1976). A two-dimensional mapping with a strange attractor. In The theory of chaotic attractors (pp. 94-102). Springer, New York, NY.
  • Yoshida, T., Mori, H., & Shigematsu, H. (1983). Analytic study of chaos of the tent map: band structures, power spectra, and critical behaviors. Journal of statistical physics, 31(2), 279-308.
  • Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell system technical journal, 28(4), 656-715.
  • Bandyopadhyay, S. K., Bhattacharyya, D., & Das, P. (2008, June). Handwritten signature recognition using departure of images from independence. In 2008 3rd IEEE Conference on Industrial Electronics and Applications (pp. 964-969). IEEE.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü