Isı Alıcı Üzerinde Çarpan Jetle Soğutma Performansının Sayısal Olarak Belirlenmesi

Çarpan jet akışına ait tekniklerin kullanımı, son zamanlarda birçok araştırmacı için büyük önem taşımaktadır. Bu yöntem sayesinde, büyük ısı transfer oranları elde edilmektedir. Bu çalışmada, ardışık olarak daralan-genişleyen düzende dizilmiş dikdörtgen geometriye sahip kanatçık çiftlerinin bir ısı alıcı üzerindeki soğutma performansı incelenmiştir. Çalışmada, önceki çalışmada Taguchi yöntemi ile optimize edilmiş ısı alıcı kullanılmıştır. Analizler, üç farklı lüle çapında (D=50, 63, 75 mm), üç farklı ısı akısında (q=2222, 3333, 4444 W/m2) ve dört farklı jet hızında (10, 12, 14, 16 m/sn), sabit lüle-ısı alıcı mesafesinde (h/d=1) gerçekleştirilmiştir. Çalışma, ANSYS Fluent yazılımı kullanılarak sayısal olarak analiz edilmiştir. Analize en uygun model olarak k-ε türbülans modeli seçilmiştir. Sayısal sonuçlar, ortalama Nusselt sayısının Reynolds sayısındaki artışla doğru orantılı olduğunu göstermiştir. Ayrıca Nusselt sayısı, lüle çapı arttıkça artmıştır. Sonuçlar grafiksel olarak (Nu-Re) açıklanmıştır. Yerel Nusselt sayısına ait maksimum noktanın jetin durma noktasında olduğu tespit edilmiştir.

Numerical Determination Of Cooling Performance On Heat Sink Using Impingement Jet

The use of impingement jet technics drew significant attention of researchers in the recent period. In this method, significant heat transfer rates are achieved. The present study examined the cooling performance of the fin pairs, which are aligned in a consecutively enlarging-contracting pattern and have a rectangular geometry, on a heat sink. The target geometry was optimized in the previous study by using the Taguchi method. The analyses were performed using four different impingement jet velocities (10, 12, 14, and 16 m/sec.), three different nozzle diameters (D=50, 63, and 75 mm), three different heat flux values (q=2222, 3333, and 4444 W/m2), and constant nozzle-to-target distance (h/d=1) were analyzed. These results were simulated numerically by using the ANSYS Fluent software. The k-ε realizable turbulence model was selected as the best model. The numerical results showed that the mean Nusselt number is directly proportional to the increase in the Reynolds number. The Nusselt number also increased with the increasing nozzle diameter value. The results are illustrated graphically (Nu-Re) in the present study. The peak value of the local Nusselt number was found to be at the stagnation point.

___

  • A. Basaran and F. Selimefendigil, “Numerical study of heat transfer due to twinjets impingement onto an isothermal moving plate”, Mathematical and Computational Applications, vol. 18, no.3, pp. 340-350, 2013.
  • R. Viskanta, “Heat transfer to impinging isothermal gas and flame jets”, Experimental Thermal and Fluid Science, vol. 6, no. 2, pp. 111-134, 1993.
  • X. Liu and J. H. Lienhard, “Extremely high heat fluxes beneath impinging liquid jets”, ASME Journal of Heat Transfer, vol. 115, no. 2, pp. 472-476, 1993.
  • J. H. Lienhard V and J. Hadeler, “High heat flux cooling by liquid jet‐array modules”, Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, vol. 22, no. 11, pp. 967-970, 1999.
  • T. H. Park, H. G. Choi, J. Y. Yoo and S. J. Kim, “Streamline upwind numerical simulation of two-dimensional confined impinging slot jets”, International Journal of Heat and Mass Transfer, vol. 46, no. 2, pp. 251-262, 2003.
  • M. Molana, and S. Banooni, “Investigation of heat transfer processes involved liquid impingement jets: A review”, Brazilian Journal of Chemical Engineering, vol. 30, no. 3, pp. 413-435, 2013.
  • M. A. Sharif, “Heat transfer from an isothermally heated flat surface due to twin oblique slot-jet impingement”, Procedia Engineering, vol. 56, pp. 544-550, 2013.
  • O. Al-aqal, “Heat transfer distributions on the walls of a narrow channel with jet impingement and cross-flow”, PhD. Thesis, Mechanical Engineering, University of Pittsburgh, Pennsylvania, USA, 2003.
  • P. S. Penumadu and A. G. Rao, “Numerical investigations of heat transfer and pressure drop characteristics in multiple jet impingement system”, Applied Thermal Engineering, vol. 110, pp. 1511-1524, 2017.
  • K. Guresci, F. Yesildal, A. Karabey, R. Yakut and K. Yakut, “Numerical analysis with experimental comparison in duct flow using optimized heat sinks”, Journal of Radiation Research and Applied Sciences, vol. 11, no. 2, pp. 116-123, 2018.
  • H. Shariatmadar, A. Momeni, A. Karimi, and M. Ashjaee, “Heat transfer characteristics of laminar slot jet arrays impinging on a constant target surface temperature”, Applied Thermal Engineering, 76, 252-260, 2015.
  • O. Caggese, G. Gnaegi, G. Hannema, A. Terzis and P. Ott, “Experimental and numerical investigation of a fully confined impingement round jet”, International Journal of Heat and Mass Transfer, vol. 65, pp. 873-882, 2013.
  • R. Yakut, K. Yakut, F. Yeşildal and A. Karabey, “Experimental and numerical investigations of impingement air jet for a heat sink”, Procedia Engineering, vol. 157, pp. 3-12, 2016.
  • D. Bozdogan, “Experimental and numerical analysis of heat and flow characteristics with impingement jet for optimized rectangular finned heat sinks”, Master Thesis, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, Turkey, 2020.
  • C. Wan, Y. Rao and P. Chen, “Numerical predictions of jet impingement heat transfer on square pin-fin roughened plates”, Applied Thermal Engineering, vol. 80, pp. 301-309, 2015.
  • B. Yousefi-Lafouraki, A. Ramiar and A. A. Ranjbar, “Numerical investigation of laminar forced convection and entropy generation of nanofluid in a confined impinging slot jet using two-phase mixture model”, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, vol. 43, no. 1, pp. 165-179, 2019.
  • P. Xu, A. P. Sasmito, S. Qiu, A. S. Mujumdar, L. Xu and L. Geng, “Heat transfer and entropy generation in air jet impingement on a model rough surface”, International Communications in Heat and Mass Transfer, vol. 72, pp. 48-56, 2016.
  • O. Manca, P. Mesolella, S. Nardini and D. Ricci, “Numerical study of a confined slot impinging jet with nanofluids”, Nanoscale Research Letters, vol. 6, no. 1, pp. 1-16, 2011.
  • P. Vaziei and O. Abouali, “Numerical study of fluid flow and heat transfer for Al2O3-water nanofluid impinging jet”, 7th International Conference on Nanochannels, Microchannels, and Minichannels, ISBN No. 978-0-7918-4349-9, pp. 977-984, Pohang, South Korea, 22-24 June 2009.
  • M. Beriache, A. Bettahar, H. Naji, L. Loukarfi, and L. M. Saïdia, “Fluid flow and thermal characteristics of a mini channel heat sink with impinging airflow”, Arabian Journal for Science and Engineering, vol. 37, no.8, pp. 2243-2254, 2012.
  • A. Yeşilyurt, “Experimental and numerical investigation of cooling with multiple air jet impingement”, Master Thesis, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey, 2019.
  • R. A. A. Al-Ani, “Numerical analysis of heat and flow characteristics with impingement cooling jet for optimized rectangular finned heat sink”, Master Thesis, Institute of Natural and Applied Sciences, Van Yüzüncü Yıl University, Van, Turkey, 2021.
  • P. Ross, “Taguchi Techniques For Quality Engineering”, McGraw-Hill, Singapore, 1989.
  • A. Karabey, “Determination of heat and flow characteristics of impingement jet for heat sink”, Master Thesis, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey, 2010.
  • N. Yıldız, “Investigation of heat and flow characteristic with impingement jet for optimized hexagonal finned heat sinks”, Master Thesis, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey, 2012.