İki Pozitif Azot Atomu İçeren Di-katyonik Yüzey Aktif Maddelerin Sentezi ve 1.0 M HCl Ortamında Korozyon İnhibisyon Etkinliklerinin İncelenmesi

Bu çalışmada, kimyasal yapısında iki adet pozitif yüklü kuaterner amonyum azotu içeren üç tane di-katyonik yüzey aktif madde sentezlenmiştir. Sentezlenen yüzey aktif maddelerin kimyasal yapıları çeşitli spektroskopik yöntemlerle (FT-IR, 1H NMR ve 13C NMR) ispatlanmıştır. Sentezlenen ve moleküler yapıları aydınlatılan 3 adet ürünün, 1.0 M HCl asidik ortamda, kütle kaybı yöntemi kullanılarak yumuşak çeliğin korozyonuna karşı inhibisyon etkinlikleri belirlenmiştir. Farklı inhibitör konsantrasyonlarına sahip asidik çözeltilere, metal kuponların, oda sıcaklığında 24 saat süreyle daldırılması suretiyle yapılan korozyon testleri sonucunda, her üç yüzey aktif madde için, birbirine yakın ve etkin inhibisyon verimleri elde edilmiştir. Moleküler yapılarında bulunan uzun karbon zincirindeki karbon sayısının fazlalığı korozyona karşı korumada etkin bir faktör olduğu gösterilmiştir. Uzun zincirindeki karbon sayısı en fazla olan inhibitörün asit ortamındaki korozyon inhibisyon etkinliğinin diğerlerine göre biraz daha yüksek olduğu tespit edilmiştir. Bunun yanı sıra, korozyona karşı etkinlikleri ile ilişkilendirmek adına, söz konusu di-katyonik yüzey aktif maddeler için kritik misel konsantrasyonu, bu konsantrasyondaki yüzey gerilimleri, misel oluşum serbest enerjisi, köpük kararlılığı gibi bazı fizikokimyasal parametreleri de hesaplama yoluna gidilmiştir. Yüzey aktif maddelerin metal yüzeyine adsorbe olarak yüzeyi korozyondan koruduklarının önemli bir destekleyici delili olan taramalı elektron mikroskobu (SEM) ile yüzey görüntüleri de alınmış ve asit çözeltisine daldırılan metal yüzeylerindeki pürüzlülük halleri belirlenmiştir.

Synthesis of Di-cationic Surfactants Containing Two Positive Nitrogen Atoms and Investigation Their Corrosion Inhibition Efficiency in 1.0 M HCl Medium

Three di-cationic surfactants containing two positively charged quaternary ammonium nitrogen in their chemical structure were synthesized in this study. The chemical structures of the synthesized surfactants were characterized by various spectroscopic methods (FT-IR, 1H NMR and 13C NMR). The inhibition activities of the three synthesized products, against corrosion of mild steel, were determined by using the weight loss method in 1.0 M HCl acidic medium. Close and effective inhibition efficiencies were obtained for all three surfactants as a result of corrosion tests which were performed by immersing metal coupons in acidic solutions with different inhibitor concentrations for 24 hours at room temperature. It has been shown that the number of carbon in the long carbon chain in their molecular structures, was been an effective factor in corrosion protection. The inhibitor with the highest number of carbon in the long chain, has a slightly higher corrosion inhibition efficiency in the acid environment than the others. In addition, some physicochemical parameters such as critical micelle concentration, surface tensions at this concentration, micelle formation free energy, foam stability were calculated for the di- cationic surfactants to correlate them with their anti-corrosion activities. Surface images were also taken with scanning electron microscope (SEM), which indicate that surfactants adsorb on the metal surface and protect the surface from corrosion. With this method, the roughness of the metal surfaces immersed in the acid solution were determined.

___

  • Referans 1 J. O’m. Bockrıs, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry Fundamentals of Electrodics, 2’nd ed.,vol. 2A, New York, USA: Kluwer Academic / Plenum Publishers, 2000, pp. 806–846.
  • Referans 2 M. Erbil, Korozyon İlkeler ve Önlemler, Ankara, Türkiye: Poyraz Ofset, 2012 ss. 373.
  • Referans 3 M. A. Quaraishi, A. F. Ansari, and D. Jamal, “Thiourea derivatives as corrosion inhibitors for mild steel in formic acid,” Materials Chemistry and Physics, vol.77, pp. 687–690, 2002.
  • Referans 4 Ü. Ergun, D. Yüzer, and K. C. Emregül, “The inhibitory effect of bis-2,6-(3,5-dimethylpyrazolyl)pyridine on the corrosion behaviour of mild steel in HCl solution,” Materials Chemistry and Physics, vol. 109, no. (2-3), pp. 492–499, 2008.
  • Referans 5 E. M. Sherif, “Corrosion inhibition in 2.0 M sulfuric acid solutions of high strength maraging steel by aminophenyl tetrazole as a corrosion inhibitor,” Applied Surface Science, vol. 292, pp. 190–196, 2014.
  • Referans 6 B. Doğru Mert, M. E. Mert, G. Kardaş, ve B. Yazıcı, “Experimental and theoretical investigation of 3-amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium,” Corrosion Science, vol. 53, pp. 4265–4272, 2011.
  • Referans 7 A. Kosari, M.H. Moayed, A. Davoodi, R. Parvizi, M. Momeni, H. Eshghi, and H. Moradi, “Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow,” Corrosion Science, vol. 78, pp. 138–150, 2014.
  • Referans 8 R. Solmaz, E. Altunbaş¸ ve G. Kardaş, “Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol Schiff base on mild steel,” Materials Chemistry and Physics, vol. 125, pp. 796–801, 2011.
  • Referans 9 M. Erbil, Korozyon İnhibitöleri ve İnhibitör Etkinliklerinin Saptanması Ankara, Türkiye: Segem, 1984, ss. 3–146.
  • Referans 10 R. Karthikaiselvi, and S. Subhashini, “Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-o-methoxy aniline),” Journal of the Association of Arab Universities for Basic and Applied Sciences, vol. 16, pp. 74–82, 2013.
  • Referans 11 S. Öztürk, “Synthesis and corrosion inhibition effects of quinazolin-(3H)-4-one derivatives containing long-chain pyridinium salts on carbon steel in 1.5 M HCl,” Protection of Metals and Physical Chemistry of Surfaces, vol. 53, no. 5, pp. 920–927, 2017.
  • Referans 12 A. Yıldırım, S Öztürk, and M. Çetin, “Novel amide-based cationic surfactants as efficient corrosion inhibitors for carbon steel in HCl and H2SO4 media,” Journal of Surfactants and Detergents, vol. 16, pp. 13–23, 2013.
  • Referans 13 L. Feng, C. Yin, H. Zhang, Y. Li, X. Song, Q. Chen, and H. Liu, “Cationic gemini surfactants with a bipyridyl spacer as corrosion inhibitors for carbon steel,” ACS Omega, vol. 3, 18990–18999, 2018.
  • Referans 14 H. M. Abd El-Lateef, M. A. Abo-Riya, and A. H. Tantawy, “Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic gemini surfactantson carbon steel pipelines in acid pickling processes,” Corrosion Science, vol. 108, pp. 94–110, 2016.
  • Referans 15 D. Asefi, M. Arami, and N. M. Mahmoodi, “Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium,” Corrosion Science, vol. 52, pp. 794–800, 2010.
  • Referans 16 M. A. Hegazy, E. M. S. Azzam, N. G. Kandil, A. M. Badawi, and R. M. Sami, “Corrosion inhibition of carbon steel pipelines by some new amphoteric and di-cationic surfactants in acidic solution by chemical and electrochemical methods,” Journal of Surfactants and Detergents, vol. 19, pp. 861–871, 2016.
  • Referans 17 S. Öztürk, “Synthesis of quinazoline derivative di-cationic surfactants and their corrosion protection of mild steel in acidic media,” Russian Journal of Organic Chemistry, vol. 55, no. 2, pp. 245–249, 2019.
  • Referans 18 S. Öztürk, “Synthesis and corrosion inhibition behavior of novel amide-based quarternary di-cationic surfactants on carbon steel in HCl solutions,” Protection of Metals and Physical Chemistry of Surfaces, Vol. 54, No. 5, pp. 953–962, 2018.
  • Referans 19 Cold rolled low carbon steel flat products for cold forming—Technical delivery conditions, German version EN 10130:2006, DIN (Deutsches Institut für Normung e.V.) Standart, 2007.
  • Referans 20 S. Öztürk, “Düşük karbon çeliğinin asidik ortamdaki korozyonuna karşı inhibitör özelliği gösteren 4-okso-kinazolin türevi katyonik yüzey aktif maddelerin sentezi,” Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, s. 3, ss. 986–1000, 2018.
  • Referans 21 S. Sugden, “The determination of surface tension from the rise in capillary tubes,” Journal of the Chemical Society, Transactions, vol. 119, pp. 1483–1492, 1921.
  • Referans 22 W. Martino, J. Fernandez de la Mora, Y. Yoshida, G. Saito, and J. Wilkes, “Surface tension measurements of highly conducting ionic liquids,” Green Chemistry, vol. 8, pp. 390–397, 2006.
  • Referans 23 M. A. El-Sukkary, A. A. El-Sawy, and F. El-Dib, “Synthetic detergents from crude rice-brain oil,” Hungarian Journal of Industry and Chemistry, vol. 15, pp. 317–321, 1987.
  • Referans 24 E. Kuliszewska, and L. Brecker, “Gemini surfactants foam formation ability and foam stability depends on spacer length, Journal of Surfactants and Detergents, vol. 17, pp. 951–957, 2014.
  • Referans 25 H. Abdelrazik, M. Mona, and H. A. Rehim, “Surface active hyperbranched polyamideester as a corrosion inhibitor for carbon steel in both neutral and acidic media,” Anti-Corrosion Methods and Materials, vol. 62, pp. 95–102, 2015.
  • Referans 26 M. Lashgari, M. R. Arshadi, and M. Biglar, “Comparative studies of some heterocyclic compounds as corrosion inhibitors of copper in phosphoric acid media,” Chemical Engineering Communications, vol. 197, pp. 1303–1314, 2010.
  • Referans 27 H. Gerengi, M. M. Solomon, S. Öztürk, A. Yıldırım, G. Gece, and E. Kaya, “Evaluation of the corrosion inhibiting efficacy of a newly synthesized nitrone against St37 steel corrosion in acidic medium: Experimental and theoretical approaches,” Materials Science & Engineering C, vol. 93, pp. 539–553, 2018.
  • Referans 28 L. G. Qiu, A. J. Xie, and Y. H. Shen, “A novel triazole-based cationic gemini surfactant: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid,” Materials Chemistry and Physics, vol. 91, pp. 269–273, 2005.
  • Referans 29 I. Aiad, M. A. Riya, S. M. Tawfik, and M. A. Abousehly, “Protection of carbon steel against corrosion in hydrochloric acid solution by some synthesized cationic surfactants,” Protection of Metals and Physical Chemistry of Surfaces, vol. 52, pp. 339–347, 2016.
  • Referans 30 P. Tyagi, and R. Tyagi, “Synthesis and physico-chemical properties of novel dialkyl diphosphate gemini surfactants based on octadecanol,” European Journal of Lipid Science and Technology, vol. 113, pp. 848–855, 2011.
  • Referans 31 K. Taleb, M. Mohamed-Benkada, N. Benhamed, S. Saidi-Besbes, Y. Grohens, and A. Derdour, “Benzene ring containing cationic gemini surfactants: Synthesis, surface properties and antibacterial activity,” Journal of Molecular Liquids, vol. 241, pp. 81–90, 2017.
  • Referans 32 S. Öztürk, S. Okay, and A. Yıldırım, “Synthesis, anticorrosion, antibacterial, and antifungal activity of new amphiphilic compounds possessing quinazolin-4(3H)- one scaffold,” Russian Chemical Bulletin, vol. 69, no. 11, pp. 2205–2214, 2020
  • Referans 33 I. Aiad, M. M. El-Sukkary, E. A. Soliman, M. Y. El-Awady, and S. M. Shaban, “Inhibition of mild steel corrosion in acidic medium by some cationic surfactants,” Journal of Industrial and Engineering Chemistry, vol. 20, pp. 3524–3535, 2014.
  • Referans 34 S. Öztürk, A. Yıldırım, G. Gece, and H. Türkdemir, “Flexible semicrown ether-linked symmetric cationic gemini surfactants: Synthesis and evaluation as catalysts for acceleration of diastereoselective [3 + 2] cycloaddition reaction in reversed phase micellar media,” Journal of Surfactants and Detergents, vol. 22, pp. 197–208, 2019.
  • Referans 35 M. J. Rosen, Surfactants and interfacial phenomena, 2nd ed., New York, USA: John Wiley & Sons, 1989, pp. 84.
  • Referans 36 S. G. Oh, and D. O. Shah, “The effect of micellar lifetime on the rate of solubilization and detergency in sodium dodecyl sulfate solutions, Journal of American Oil Chemists' Society, vol. 70, no. 7, pp. 673–678, 1993.
  • Referans 37 S. Papavinasam, Corrosion Inhibitors. In: Uhlig’s Corrosion Handbook, W.R. Revie (Editor), Wiley Interscience, 2000, pp. 1089–1105.
  • Referans 38 S. Öztürk, M. M. Özkazanlı, İ. Akyıldız, T. Kara, and F. Çelik, “Asidik ortamda korozyon inhibitörü görevi üstlenen üç pozitif azot atomu içeren tri-katyonik yüzey aktif maddelerin sentezi,” Avrupa Bilim ve Teknoloji Dergisi, s. 21, ss. 669–679, 2021.
  • Referans 39 S. Öztürk, “Potansiyel korozyon inhibitör özelliği taşıyan bazı amid bileşiklerinin tasarımı ve sentezi,” Doktora Tezi, Kimya Bölümü, Uludağ Üniversitesi, Bursa, Türkiye, 2013.