Bir üretim kusuru: fiber distorsiyonu ve polimer kompozitlerin termomekanik özellikleri üzerindeki etkisi

Bu çalışmanın amacı, bir üretim kusuru olan, lif bozulmalarının, kompozit malzemelerin ortaya çıkan termoelastik davranışı üzerindeki etkisini sonlu elemanlar mikromekanik modellemesi ile altıgen olarak paketlenmiş Temsili Hacim Elemanlarında (THE) araştırmaktır. Reçinenin kür çevrimi boyunca anlık termokimyasal ve termoelastik davranışı modele uygulanır. Bu, kürleme döngüsünün sonunda %0 ila %18 arasında fiber distorsiyonlarına sahip olan kompozitlerin termomekanik özelliklerinin hesaplanmasını sağlar. Fiber distorsiyonunun, proses kaynaklı artık gerilmeler ve Termal Genleşme Katsayıları (TGK) değerleri üzerinde büyük etkisi olduğu bulunmuştur. Fiber distorsiyonu ile artık gerilimlerin ve TGK’ların değişimini ifade eden denklemler elde edilir. Bu çalışma, kompozit malzemelerin sonlu elemanlar modellemesinde bir üretim kusuru olan fiber distorsiyonlarının dikkate alınmasının önemini kanıtlamaktadır.

A manufacturing imperfection: fiber distortion and its effect on thermomechanical properties of polymer composites

The aim of this study is to investigate the effect of a production imperfection, fiber distortions, on the resulting thermoelastic behaviour of composite materials in hexagonally packed Representative Volume Elements (RVEs) with finite elements micromechanical modelling. Instantaneous thermochemical and thermoelastic behavior of resin throughout the cure cycle is implemented into the model. This enables to calculate the resulting thermomechanical properties of composites, having fiber distortions from 0 to 18%, at the end of the cure cycle. It is found that the fiber distortion has great effect on the process induced residual stresses and Coefficients of Thermal Expansion (CTE) values. Equations expressing the variation of residual stresses and CTEs with fiber distortion are obtained. This study proves the importance of consideration of fiber distortions, a manufacturing defect, in finite element modeling of composite materials.

___

  • [1] C. T. Sun and R. S. Vaidya, “Prediction of composite properties from a representative volume element,” Composites Science and Technology, vol. 56, no. 2, pp. 171–179, 1996, doi: 10.1016/0266-3538(95)00141-7.
  • [2] Z. Xia, Y. Chen, and F. Ellyin, “A meso/micro-mechanical model for damage progression in glass-fiber/epoxy cross-ply laminates by finite-element analysis,” Composites Science and Technology, vol. 60, no. 8, pp. 1171–1179, 2000, doi: 10.1016/S0266-3538(00)00022-1.
  • [3] Z. Xia, Y. Zhang, and F. Ellyin, “A unified periodical boundary conditions for representative volume elements of composites and applications,” International Journal of Solids and Structures, vol. 40, no. 8, pp. 1907–1921, 2003, doi: 10.1016/S0020-7683(03)00024-6.
  • [4] Y. Zhang, Z. Xia, and F. Ellyin, “Evolution and influence of residual stresses/strains of fiber reinforced laminates,” Composites Science and Technology, vol. 64, no. 10–11. pp. 1613–1621, 2004. doi: 10.1016/j.compscitech.2003.11.012.
  • [5] Y. Chen, Z. Xia, and F. Ellyin, “Evolution of residual stresses induced during curing processing using a viscoelastic micromechanical model,” Journal of Composite Materials, vol. 35, no. 6, pp. 522–542, 2001, doi: 10.1177/002199801772662145.
  • [6] L. G. Zhao, N. A. Warrior, and A. C. Long, “A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites,” International Journal of Solids and Structures, vol. 43, no. 18–19, pp. 5449–5467, 2006, doi: 10.1016/j.ijsolstr.2005.08.012.
  • [7] L. G. Zhao, N. A. Warrior, and A. C. Long, “A thermo-viscoelastic analysis of process-induced residual stress in fibre-reinforced polymer-matrix composites,” Materials Science and Engineering A, vol. 452–453, pp. 483–498, 2007, doi: 10.1016/j.msea.2006.10.060.
  • [8] C. González and J. LLorca, “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling,” Composites Science and Technology, vol. 67, no. 13, pp. 2795–2806, 2007, doi: 10.1016/j.compscitech.2007.02.001.
  • [9] L. P. Canal, C. González, J. Segurado, and J. LLorca, “Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling,” Composites Science and Technology, vol. 72, no. 11, pp. 1223–1232, Jun. 2012, doi: 10.1016/j.compscitech.2012.04.008.
  • [10] B. Sabuncuoglu, L. Gorbatikh, and S. v Lomov, “International Journal of Solids and Structures Analysis of stress concentrations in transversely loaded steel-fiber composites with nano-reinforced interphases,” vol. 131, pp. 248–257, 2018, doi: 10.1016/j.ijsolstr.2017.09.031.
  • [11] H. Ghayoor, S. v Hoa, and C. C. Marsden, “A micromechanical study of stress concentrations in composites,” Composites Part B, vol. 132, pp. 115–124, 2018, doi: 10.1016/j.compositesb.2017.09.009.
  • [12] M. Herráez, D. Mora, F. Naya, C. S. Lopes, C. González, and J. Llorca, “Transverse cracking of cross-ply laminates : A computational micromechanics perspective,” vol. 110, pp. 196–204, 2015, doi: 10.1016/j.compscitech.2015.02.008.
  • [13] F. Danzi, D. Fanteria, E. Panettieri, and M. C. Mancino, “A numerical micro-mechanical study on damage induced by the curing process in carbon / epoxy unidirectional material,” Composite Structures, vol. 210, no. January 2018, pp. 755–766, 2019, doi: 10.1016/j.compstruct.2018.11.059.
  • [14] G. Han, Z. Guan, and S. Du, “Damage evolution and multi-scale analysis of carbon fi ber-reinforced cross-ply laminate with thermal residual stress,” vol. 22, no. 5, pp. 331–342, 2015.
  • [15] Z. Yuan, Y. Wang, G. Yang, A. Tang, Z. Yang, and S. Li, “Evolution of curing residual stresses in composite using multi-scale method,” Composites Part B, vol. 155, no. June, pp. 49–61, 2018, doi: 10.1016/j.compositesb.2018.08.012.
  • [16] G. Han, Z. Guan, Z. Ji, and S. Du, “Initial damage induced by thermal residual stress and microscopic failure analysis of carbon-fiber reinforced composite under shear loading,” Composite Interfaces, vol. 6440, pp. 1–15, 2015, doi: 10.1080/09276440.2015.1021592.
  • [17] G. Han, Z. Guan, Z. Li, and M. Zhang, “Multi-Scale Modeling and Damage Analysis of Composite with Thermal Residual Stress,” no. 37, pp. 289–305, 2015, doi: 10.1007/s10443-014-9407-2.
  • [18] M. M. Aghdam and A. Dezhsetan, “Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model,” Composite Structures, vol. 71, no. 3–4, pp. 327–332, 2005, doi: 10.1016/j.compstruct.2005.09.018.
  • [19] A. R. Maligno, N. A. Warrior, and A. C. Long, “Effects of inter-fibre spacing on damage evolution in unidirectional (UD) fibre-reinforced composites,” European Journal of Mechanics, A/Solids, vol. 28, no. 4, pp. 768–776, Jul. 2009, doi: 10.1016/j.euromechsol.2008.10.009.
  • [20] T. J. Vaughan and C. T. McCarthy, “A micromechanical study on the effect of intra-ply properties on transverse shear fracture in fibre reinforced composites,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 9, pp. 1217–1228, Sep. 2011, doi: 10.1016/j.compositesa.2011.05.004.
  • [21] L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Computational Materials Science, vol. 68, pp. 255–262, 2013, doi: 10.1016/j.commatsci.2012.09.027.
  • [22] G. Han, Z. Guan, Z. Ji, and S. Du, “Initial damage induced by thermal residual stress and microscopic failure analysis of carbon-fiber reinforced composite under shear loading,” Composite Interfaces, vol. 22, no. 5, pp. 315–329, Jun. 2015, doi: 10.1080/09276440.2015.1021592.
  • [23] M. Herráez et al., “Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: An approach to virtual materials design,” Composites Part A: Applied Science and Manufacturing, vol. 91, pp. 484–492, Dec. 2016, doi: 10.1016/j.compositesa.2016.02.026.
  • [24] H. Ghayoor, S. v. Hoa, and C. C. Marsden, “A micromechanical study of stress concentrations in composites,” Composites Part B: Engineering, vol. 132, pp. 115–124, Jan. 2018, doi: 10.1016/j.compositesb.2017.09.009.
  • [25] Q. Sun et al., “Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model,” Composites Science and Technology, vol. 172, pp. 81–95, Mar. 2019, doi: 10.1016/j.compscitech.2019.01.012.
  • [26] M. Mehdikhani, M. Aravand, B. Sabuncuoglu, M. G. Callens, S. v. Lomov, and L. Gorbatikh, “Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation,” Composite Structures, vol. 140, pp. 192–201, Apr. 2016, doi: 10.1016/J.COMPSTRUCT.2015.12.020.
  • [27] M. Mehdikhani, A. Matveeva, M. A. Aravand, B. L. Wardle, S. v. Lomov, and L. Gorbatikh, “Strain mapping at the micro-scale in hierarchical polymer composites with aligned carbon nanotube grafted fibers,” Composites Science and Technology, vol. 137, pp. 24–34, Dec. 2016, doi: 10.1016/J.COMPSCITECH.2016.10.021.
  • [28] M. I. Okereke and A. I. Akpoyomare, “A virtual framework for prediction of full-field elastic response of unidirectional composites,” Computational Materials Science, vol. 70, pp. 82–99, 2013, doi: 10.1016/j.commatsci.2012.12.036.
  • [29] T. J. Vaughan and C. T. Mccarthy, “Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites,” Composites Science and Technology, vol. 71, no. 3, pp. 388–396, 2011, doi: 10.1016/j.compscitech.2010.12.006.
  • [30] M. Mehdikhani, N. A. Petrov, I. Straumit, A. R. Melro, S. v Lomov, and L. Gorbatikh, “The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales,” Composites Part A, vol. 117, no. October 2018, pp. 180–192, 2019, doi: 10.1016/j.compositesa.2018.11.009.
  • [31] Hexcel, “HexPly ® 8552 - Product Data Sheet - EU Version,” pp. 1–6, 2016.
  • [32] N. Ersoy et al., “Development of the properties of a carbon fibre reinforced thermosetting composite through cure,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 3, pp. 401–409, 2010, doi: 10.1016/j.compositesa.2009.11.007.
  • [33] Hexcel, “HexTow ® AS4,” Material Datasheet, vol. 000, p. 2, 2015.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Kilis Yüzeysel Su Kaynaklarından İzole Edilen Fekal Streptokokların Antibiyotik Hassasiyet Profilleri

Hatice Aysun MERCİMEK TAKCI, Sevil TOPLAR

Makine Öğrenimi Yöntemleriyle Bazaltlarda Tek Eksenli Sıkışma Dayanımının Değerlendirilmesi ve Performanslarının Karşılaştırılması

Nurgül GÜLTEKİN, Ayhan DOĞAN

Derleme: Elektroaktif Polimerler

Bahar Şölen AKDEMİR, İhsan Murat KUŞOĞLU

Müfredat Tabanlı Ders Çizelgeleme Problemi için Yeni Bir Açgözlü Algoritma

Batuhan Mustafa COŞAR, Bilge SAY, Tansel DÖKEROĞLU

DA Makinesi Hız Kontrolünün Q-Öğrenme Tabanlı PID Kontrolör ile Gerçek-Zamanlı Uygulaması

Bekir Murat AYDIN, Burhan BARAKLI

Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar

Yalçın ALTUNKAYNAK, Mutlu CANPOLAT, Ömer YAVUZ

Betonda Agrega İle Yer Değiştirilen Atık Döküm Kumunun Sertleşmiş Betonun Kimyasal ve Mineralojik Yapısına ve Mekanik Dayanımına Olan Etkisi

Merve KALEM, Fatma Nur HARMANCI

MLP Tabanlı DNN Modeli Kullanılarak Akıllı Alanlar İçin Yürüyüş Analizinden Kişi Tanıma

Cüneyt YÜCELBAŞ

Makine Öğrenmesi Algoritmalarıyla Hisse Senedi Kapanış Fiyat Tahmini: BIST’te Yer Alan PETKM Hisse Senedi Örneği

Şevval TOPRAK, Gültekin ÇAĞIL, Abdullah Hulusi KÖKÇAM

Agaricus bisporus Ekstraktı Kullanılarak ZnO Nanopartiküllerinin Yeşil Sentezi: Yapısal Karakterizasyonu ve Biyolojik Aktivitelerinin İncelenmesi

Ravza BEKEM, Sefa DURMUŞ, Aslıhan DALMAZ, Gorkem DULGER