Enerji Spektrumları ve Quadrupole Geçiş olasılıklarının 190 Hg'nin Teorik Tanımı

Bu yazıda, 190Hg çekirdeğindeki iki farklı yapının, deforme ve küresel şekillerin bir arada varlığını düşündük. Bu amaçla, bu nükleusun enerji spektrumları ve kuadrupol geçiş olasılıklarını belirledik. Afin yalan cebirine dayanan geçişli bir etkileşimli Boson Modeli Hamiltoniyeni, şekil bir arada bulunmanın tanımlanması için yeni bir genel teknik sağlamak amacıyla kullanılmıştır. Parametrik olmayan (genel ölçek faktörlerine kadar) teorik tahminlere yönelik tahminlerin, deneysel eşlerle iyi bir uyum içinde olduğu bulunmuştur. Ayrıca, sonuçlarımız sırasıyla düzenli ve saldırgan konfigürasyonların tanımlanması için O (6) ve U (5) dinamik simetrilerin bir kombinasyonunu sunmaktadır.

Theoretical Description of Energy Spectra and Quadrupole Transition Probabilities of 190 Hg

In this paper, we have considered the coexistence of two quite different structures, the deformed andspherical shapes in 190Hg nucleus. To this aim, we have determined the energy spectra and quadrupole transitionprobabilities of this nucleus. A transitional Interacting Boson Model Hamiltonian which are based on affine(1,1) SU lie algebra have been used to provide a new general technique for description of shape coexistence.Parameter free (up to overall scale factors) predictions for theoretical predictions are found to be in goodagreement with experimental counterparts. Also, our results offer a combination of O(6) and U(5) dynamicalsymmetries for description of regular and intruder configurations, respectively.

___

  • Duval P D.and Barrett B R.,Quantitative description of configuration mixing in the interacting Boson model, Nucl.Phys.A., 376 (1982) 213.
  • Nomura K.and Otsuka T., Shape coexistence in the microscopically guided interacting Boson model, Jurnal of Physics G. 43 (2016) 2
  • Beraud R.and Meyer M., Band crossing in 186 Hg,Nucl.Phys.A., 284(1977)221.
  • Dickmann F.and Dietrich K., Coexistence and mixing of Spherical and deformed states, Z. Physik., 271 (1974) 417.
  • Duval P D.and Barrett B R., configuration mixing in the interacting Boson model, Phys.Lett.B., 100 (1980) 3.
  • ,B.Singh.,Nuclear Data sheets for A=190, Nucl.Data Sheets .,99 (2003) 275
  • Hinohara N.and Nakatsukasa T Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence mixing dynamics, Phys.Rev.C., 80 (2009) 014305
  • Fossion R.and Heyde K.,Intruder bands and configuration mixing in Lead isotopes, Phys. Rev. C., 67 (2003) 024306
  • Bijnens N.and Decrock P., Intruder states and the onset of deformation in the neutron deficient even-even polonium isotopes, Phys.Rev.Lett., 75 (1995) 25
  • Heyde K.and Van Isaker P., A shell model interpretation of intruder states and the onset of deformation in even – even nuclei , phys.Lett.B.,155 (1985) 5
  • Oros A M.and Heyde K., Shape coexistence in the light Po isotopes, Nucl.Phys.A., 645 (1999) 107
  • Soramel F.and Bednarczyk P., Study of very neutron deficient nuclei , Eur.Phys.J.A.,4 ( 1999) 17
  • Feng Pan G P.and Draayer G., Algebraic solution of SL-Boson system in U(2L+1)- O(2L+2) transitional region,Phys. A. Math. Gen.,35( 2002) 7173
  • Feng Pan G P.and Draayer G., New algebraic solution for SO(6)-U(5) transitional nuclei in the interacting Boson model,Nucl. Phys. A., 636 (1998) 156.
  • Lipska K W.and Gaffney L P., Unique and complementary information on shape coexistence in the neutron deficient pb region from coulomb excitation, J. Phys. G. Nucl. Part. Phys., 43 (2016) 024012.
  • Garrett P E., Shape coexistence at low spin in the Z=50 region ,Phys.G.Nucl.Part.Phys.,43 (2016) 36.
  • Gorgen A.and Korten W.,Coulomb excitation studies of shape coexistence in atomic nuclei J. Phys. G. Nucl. Part. Phys., 43 (2016) 18.
  • Li Z P.and Niksic T.and Vretenar D.,Coexistenc of nuclear Shapes, J.Phys.G.Nucl.Part.Phys.,43 (2016 )22.
  • Neyens G., Shape coexistence in the N=19isotones,J.Phys.G.Nucl.Part.Phys ., 43 (2016) 024007
  • Otsuka T.and Tsunoda Y.,The role of shell evolution in shape coexistence, J. Phys. G.Nucl.Part.Phys.,43 (2016) 024.
  • Xu Y.and Krane K S.and Gummin M A.,shape coexistence and Eletric Monopole Transition in Pt, Phys.Rev.Lett., 68 (1992) 26.
  • Morales I O.and Vargas C E.and Frank A.,Shape coexistence in the neutron deficient Pt isotopes in a configuration mixing IBM, Nucl.Phys., 73 (2004) 54.
  • Andreyev A N.and Huyse M.,The discovery of a prolate oblate Spherical Shape triple of spin +0 state,Nucl.Phys.A ., 682 (2001) 482.
  • Frank A.and Van Isacker P.andVargas C E., Shape coexistence and phase transition in the Platinum isotope, Phys. Rev. C., 69 (2004) 024303.
  • Heyde K.and Meyer R A.,Monopole Strength as a measure of nuclear Shape mixing , Phys.Rev.C., 37 (1988) 5.
  • King S L.and Simpson G., First observation of excited state in the neutron deficient nuclei, Phys. Letters. B., 443 (1998) 82-88
  • Doung H T.and Pinard G.and Liberman S.,Shape transition in ne utron deficient Pt isotopes, Phys.Lett.B., 217 (1989) 4.
  • Heyde K.and Meyer R A.,Monopole Strength and Shape coexistence, Phys.Rev.C., 42 (1990) 2.
  • Larabee A J.and Carpenter M P.and Riedinger L ., Shape coexistence and alignment processes in the Pt and Au region,Phys.Lett.B.,169 (1986) 1.
  • Stachel G.and Isacker p.and Heyde K., Interpretation of the A=90 transitional region in the framework of the interacting Boson Model,Phys.Rev.C., 25 (1982) 1
  • Poves A.,Shape Coexistence the Shell Model view, J.Phys.G.Nucl.part.Phys., 43 (2016) 024010.
  • Garcia-Ramos G E.and Heyde K.,Nuclear Shape Coexistence a study of the even-even Hg isotopes,Phy .Rev.C., 89 (2014) 014306.
  • Fossion R.and Hellemans V., Shape coexistence in the Lead isotopes using Algebraic Models,Acta.Phsica. Polonica.B.,36 ( 2005) 4
  • Dracoulis G D.,Shape coexistence in very neutron deficient Pt isotopes, Nucl.phys.G.,12 (1986) 97-103.
  • Garcia-Ramos G.and Hellemans V.and Heyde K., Concealed Configuration mixing and shape coexistence, Phys.Rev.C., 84 ( 2011) 014331.
  • Garcia-Ramos G.and Heyde K.,Comparing the Interacting Boson Model With Configuration Mixing and the Extended Consistent-Qformalism, Nucl. Phys.A., 82 (2009) 39.