Su Kalitesinin Sınıflandırılmasında Spektral Sınıflandırma Yöntemlerinin Karşılaştırılması
Günümüzde, uzaktan algılama ve yersel bileşenleri kullanılarak su kalitesi ve su kirliliğinin tespiti yapılabilmektedir. Uzaktan algılama, su kalitesini ve kirliğini tespit etmede hızlı bir çözüm sunmakla kalmaz aynı zamanda düşük maliyetli de olabilmektedir. Çalışma kapsamında Sivas bölgesinin en önemli su kaynaklarından biri olan Kızılırmak nehrinin İmranlı bölgesinin ve nehir üzerinde bulunan İmranlı barajının su kalitesi spektral sınıflandırma yöntemleri ile incelenmiştir. Nehir ve barajda çeşitli noktalardan su numuneleri alınıp bunların laboratuvarda kimyasal oksijen içerikleri tespit edilmiştir. Buna ek olarak alınan su numunelerinin yersel spektral ölçümlerle yansıtım değerlerine bakılmıştır. Ölçülen yansıtımlar uç üye olarak alınıp spektral sınıflandırmada referans olarak kullanılmıştır. Uydu görüntüsü olarak ise CHRIS Proba kullanılmıştır. Spektral sınıflandırma yöntemleri olarak ise eşleşen filtreleme (MF), spektral açı haritalama (SAM) ve spektral bilgi ayrımı (SID) yöntemleri kullanılmış olup hangi yöntemin su kalitesi tespitinde daha iyi sonuç verdiği irdelenmiştir. Sonuçlara göre SAM yönteminin diğer yöntemlere göre daha iyi sınıflandırma doğruluğu sağladığı anlaşılmıştır.
Comparison of Spectral Classification Methods in Water Quality
Today, water quality and water pollution can be detected using remote sensing and its terrestrialcomponents. Remote sensing does not only provide a quick solution to detect water quality and pollution, but itcould also be low cost. Within the scope of the study, the water quality of the İmranlı area of the Kızılırmak River,one of the most important water resources of the Sivas region and the İmranlı dam on the river, was investigatedby spectral classification methods. Water samples were taken from various points on the river and dam and theirchemical oxygen demands were determined in the laboratory. In addition, the reflectance values of the watersamples taken by the local spectral measurements were examined in order to use as end members for spectralclassification. CHRIS Proba is used as satellite image. Match filtering (MF), spectral angle mapping (SAM) andspectral information divergence (SID) methods have been used as the spectral classification methods and it hasbeen examined which method gives better results in determining water quality. According to the results, it isunderstood that SAM method provides better classification accuracy than other methods.
___
- Chang C., Spectral Information
Divergence for Hyperspectral Image
Analysis, IEEE International Geoscience
and Remote Sensing Symposium
Hamburg, 1999: 509-511.
- Girouard G. and Bannari A., Validated
Spectral Angle Mapper Algorithm for
Geological Mapping: Comparative Study
Between QuickBird and Landsat-TM.
XXth ISPRS Congress Istanbul, 2004:
599-604.
- Park B., Windham W.R., Lawrence K.C.,
Smith D.P., Contaminant Classification of
Poultry Hyperspectral Imagery Using a
Spectral Angle Mapper Algorithm,
Biosystems Engineering., 96 (2017) 323-
333
- Gürsoy Ö., Canbaz O., Gökçe A., Atun R.,
Spectral Classification in Lithological
Mapping; A Case Study of Matched
Filtering, Cumhuriyet Science Journal.,
38 (2017) 731-737.
- Gürsoy Ö., Birdal A.C., Özyonar F.,
Kasaka E., Determining And Monitoring
The Water Quality Of Kizilirmak River
Of Turkey: First Results, The
International Archives of the
Photogrammetry, Remote Sensing and
Spatial Information Sciences, Volume
XL-7/W3, 2015 36th International
Symposium on Remote Sensing o Environment, 11-15 May 2015, Berlin,
Germany. [27] Millán V.E.G., Sanchez-
Azofeifa G.A., Malvárez G.C., Mapping
Tropical Dry Forest Succession with
CHRIS/PROBA Hyperspectral Images
Using Nonparametric Decision Trees,
IEEE Journal of Selected Topics in
Applied Earth Observations and Remote
Sensing., 8 (2015) 3081-3094.
- Republic of Turkey, Ministry of
Environment and Urbanization, Laws on
Management of Water Pollution
www.csb.gov.tr/db/cygm/editordosya/Y
ON-25687SKKY.docx URL (accessed on
15.02.2014).
- Demarchi L., Chan J.C.W., Ma J., Canters
F., Mapping Impervious Surfaces from
Superresolution Enhanced CHRIS/Proba
Imagery Using Multiple Endmember
Unmixing, ISPRS Journal of
Photogrammetry and Remote Sensing., 72
(2012) 99-112.
- Chan Wai J.C., Beckers P., Spanhove T.,
Vanden Borre J., An Evaluation of
Ensemble Classifiers for Mapping Natura
2000 Heathland in Belgium Using
Spaceborne Angular Hyperspectral
(CHRIS/Proba) Imagery, International
Journal of Applied Earth Observation and
Geoinformation., 18 (2012) 13-22.
- Rautiainen M., Lang M., Mõttus M.,
Kuusk A., Nilson T., Kuusk J., Lükk T.
Multi-angular reflectance properties of a
hemiboreal forest: An analysis using
CHRIS PROBA data. Remote Sensing of
Environment 2008; 112: 2627–2642.
- Abdelmalik, K. W., Role of Statistical
Remote Sensing for Inland Water Quality
Parameters Prediction, Egyptian Journal
of Remote Sensing and Space Science.,
(2016); doi 10.1016/j.ejrs.2016.12.002: 1-
8.
- Rostom N.G., Shalaby A.A., Issa Y.M.,
Afifi A.A., Evaluation of Mariut Lake
Water Quality Using Hyperspectral
Remote Sensing and Laboratory Works,
The Egyptian Journal of Remote Sensing
and Space Science., 20 (2017) 39-48.
- Lotfinasabasl S., Gunale V.R.,
Khosroshahi M., Applying Geographic
Information Systems and Remote Sensing
for Water Quality Assessment of
Mangrove Forest, Acta Ecologica Sinica.,
38 (2018) 135-143.
- Dörnhöfer K. and Oppelt N., Remote
Sensing for Lake Research and
Monitoring - Recent advances, Ecological
Indicators., 64 (2016) 105-122.
- Kiefer I., Odermatt D., Anneville O.,
Wüest A., Bouffard D., Application of
Remote Sensing for the Optimization of
In-Situ Sampling for Monitoring of
Phytoplankton Abundance in a Large
Lake, Science of the Total Environment.,
527 (2015) 493-506.
- Olmanson L.G., Brezonik P.L., Finlay
J.C., Bauer M.E., Comparison of Landsat
8 and Landsat 7 for Regional
Measurements of CDOM and Water
Clarity in Lakes, Remote Sensing of
Environment., 185 (2016) 119-128.
- Masocha M., Murwira A., Magadza
C.H.D., Hirji R., Dube T., Remote
Sensing of Surface Water Quality in
Relation to Catchment Condition in
Zimbabwe, Physics and Chemistry of the
Earth., 100 (2017) 13-18.
- Marquez L.C.G., Bejarano F.M.T.,
Espinoza A.C.T., Rodríguez I.R.H., Use
of LANDSAT 8 Images for Depth and
Water Quality Assessment of El Guájaro
Reservoir, Colombia, Journal of South
American Earth Sciences., 82 (2018) 231-
238.
- Kaya Ş., Şeker D.Z., Tanik A., Temporal
Impact of Urbanization on the Protection
Zones of Two Drinking Water Reservoirs
in Istanbul, Fresenius Environmental
Bulletin., 23 (2014) 2984-2989.
- Umar M., Rhoads B.L., Greenberg J.A.,
Use of Multispectral Satellite Remote
Sensing to Assess Mixing of Suspended
Sediment Downstream of Large River
Confluences, Journal of Hydrology., 556
(2018) 325-338.
- Chawira M., Dube T., Gumindoga W.,
Remote Sensing Based Water Quality
Monitoring in Chivero and Manyame
Lakes of Zimbabwe, Physics and
Chemistry of the Earth., 66 (2013) 38-44.
- Dlamini S., Nhapi I., Gumindoga W.,
Nhiwatiwa T., Dube T., Assessing the
Feasibility of Integrating Remote Sensing
and In-Situ Measurements in Monitoring
Water Quality Status of Lake Chivero,
Zimbabwe, Physics and Chemistry of the
Earth., 93 (2016) 2-11.
- Urbanski A., Wochna J., Bubak A.,
Grzybowski I., Matuszewska W.L., Lącka
K., Śliwińska M., Wojtasiewicz B.,
ZajączkowskI B., Application of Landsat
8 Imagery to Regional-Scale Assessment
of Lake Water Quality, International
Journal of Applied Earth Observation and
Geoinformation., 51 (2016) 28-36.
- Giardino C., Candiani G., Bresciani M.,
Lee Z., Gagliano S., Pepe M. BOMBER:
A tool for estimating water quality and
bottom properties from remote sensing
images. Computers and Geosciences
2012; 45: 313-318.
- Mattikalli N.M., Richards K.S.,
Estimation of Surface Water Quality
Changes in Response to Land Use
Change: Application of the Export
Coefficient Model Using Remote Sensing
and Geographical Information System,
Journal of Environmental Management.,
48 (1996) 263-282.
- Torgersen C.E., Faux R.N., Mcintosh
B.A., Poage N.J., Norton D.J., Airborne
Thermal Remote Sensing for Water
Temperature Assessment in Rivers and
Streams, Remote Sensing of
Environment., 76 (2001) 386-398.
- Kaya Ş., Başar U.G., Karaca M., Şeker
D.Z., Assessment of Urban Heat Islands
Using Remotely Sensed Data, Ekoloji., 21
(2012) 107-113.
- Olmanson L.G., Brezonik P.L., Bauer
M.E., Airborne Hyperspectral Remote
Sensing to Assess Spatial Distribution of
Water Quality Characteristics in Large Rivers: The Mississippi River and its
Tributaries in Minnesota, Remote Sensing
of Environment. 130 (2013) 254-265.
- Giardino C., Candiani G., Bresciani M.,
Lee Z., Gagliano S., Pepe M., BOMBER:
A Tool for Estimating Water Quality and
Bottom Properties from Remote Sensing
Images, Computers and Geosciences., 45
(2012) 313-318
- Taş B., Investigation of Water Quality of
Derbent Dam Lake (Samsun) Ekoloji., 60
(2006) 6-15.
- Akbulut A. and Akbulut N., The Study of
Heavy Metal Pollution and Accumulation
in Water, Sediment, and Fish Tissue in
Kizilirmak River Basin in Turkey,
Environmental Monitoring and
Assessment., 167 (2010) 521-526.
- Karaman M.,Budakoğlu M., Uca Avcı
Z.D., Özelkan E., Bülbül A., Civas M.,
Tasdelen S., Determination of Seasonal
Changes İn Wetlands Using
Chris/PROBA Hyperspectral Satellite
Images: A Case Study From Acıgöl
(Denizli), Turkey, Journal of
Environmental Biology., 36 (2015) 73 –
83.