4- (4-formilfenoksi) ftalonitrilin 4- (4-karboksilfenoksi) ftalonitril'e Ortam Koşullarında Oksidasyonu

Sübstitüe ftalonitriller, son yıllarda çözünür ftalosiyanin türlerini hazırlamak için kullanılmaktadır. Hedef ürün için en çok kullanılan ftalonitril türevlerinden biri, 4-nitroftalonitrildir. Bu çalışmada, 4-(4-formilfenoksi) ftalonitril, para-hidroksibenzaldehidin 4-nitroftalonitril ile nükleofilik yerdeğiştirme reaksiyonu ile sübstitüe ftalonitril türevi olarak hazırlanmıştır. Ürün yavaş buharlaştırma tekniği ile kristallendirilmesi sırasında, havaya açık ortam koşullarında, 4- (4-karboksilfenoksi) ftalonitril'e kendiliğinden oksitlenmiştir. Molekülün kristal yapısı XRD tekniği ile belirlendi. Molekül, triklinik uzay grubu P-1'de kristallenmiştir ve kristalin birim hücre parametreleri a = 6.3591 (10) Å, b = 7.5464 (11) Å, c = 13.819 (2) Å, a = 88.434 (11) °, 87 = 87.942 (12) °, γ = 80.111 (12) ° ve Z = 2’ dir. Kristal yapı moleküllerarası O ― H ∙∙∙ O, C ― H ∙∙∙ N ve C ― H ∙∙∙ O hidrojen bağlarına sahiptir. Bu hidrojen bağlarına ek olarak, moleküller arasında C — N ∙∙∙ Cg ve Cg ∙∙∙ Cg etkileşimleri mevcuttur. Kristalde moleküllerarası O ― H ∙∙∙ O hidrojen bağları, bir dimerik yapı içinde moleküler birimler arasında meydana gelir. Hedef bileşiğin, moleküler yapısı, titreşim frekansları ve 1H ve 13C NMR kimyasal kaymaları da 6-311 ++ G (d, p) temel seti ile B3LYP metodu kullanılarak hesaplanmıştır.

The Oxidation of 4-(4-Formylphenoxy) Phthalonitrile to 4-(4-Carboxylphenoxy) Phthalonitrile at Ambient Conditions

The substituted phthalonitriles have been used to prepare soluble phthalocyanine species in recent years. One of the most used phthalonitrile derivatives for the target product is 4-nitrophthalonitrile. In this study 4-(4-formylphenoxy) phthalonitrile was prepared as the substituted phthalonitrile derivative by the nucleophilic substitution reaction of para-hydroxybenzaldehyde with 4-nitrophthalonitrile. During the crystallization of the product by slow evaporation technique, it readily self-oxidized to 4-(4-carboxylphenoxy) phthalonitrile at ambient condition open to air. The crystal structure of the molecule was determined by XRD technique. The molecule crystalizes at triclinic space group P-1 and the unit cell parameters of crystal are a=6.3591 (10) Å, b=7.5464 (11) Å, c=13.819 (2) Å, α=88.434 (11)°, β=87.942 (12)°, γ=80.111 (12)° and Z=2. The crystal structure has intermolecular O―H∙∙∙O, C―H∙∙∙N and C―H∙∙∙O hydrogen bonds. In addition to these hydrogen bonds, C—N∙∙∙Cg and Cg∙∙∙Cg interactions are present between molecules. In the crystal, intermolecular O―H∙∙∙O hydrogen bonds occur between molecular units in a dimeric molecular form. Molecular structure, vibrational frequencies and 1H and 13C NMR chemical shifts of the target compound have been calculated by using B3LYP method with 6-311++G(d, p) basis set, as well.

___

  • McKeown N.B., Phthalocyanine Materials: Synthesis, Structure and Function. United Kingdom, Cambridge, 1998.
  • McKeown N.B. and Budd P.M., Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev., 35 (2006) 675-683.
  • Van der Pol J.F., Neeleman E., Zwikker J.W., Nolte R.J.M., Drenth W., Aerths J., Visser R. and Picken S., Homologous series of liquid-crystalline metal free and copper octa-n-alkoxyphthalocyanines, J. Liq. Cryst., 6 (1989) 577-592.
  • Bonnett R., Chemical Aspects of Photodynamic Therapy. Gordon and Breach, Sci Pub, 2000.
  • Torre G., Vazquez P., Agullo-Lopez F. and Torres T., Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds, Chem. Rev., 104 (2004) 3723-3750.
  • Elemans J.A.A.W., Hameren R.V., Nolte R.J.M. and Rowan A.E., Molecular Materials by Self‐Assembly of Porphyrins, Phthalocyanines and Perylenes, Adv. Mater., 18 (2006) 1251-1266.
  • Martinez-Diaz M.V., Ince M. and Torres T., Phthalocyanines: colorful macroheterocyclic sensitizers for dye-sensitized solar cells, Monatsh. Chem., 142 (2011) 699-707.
  • Leznoff C.C. and Lever A.B.P., Phthalocyanines: Properties and Applications. Cambridge, 1989, 1993, 1996.
  • Bekaroglu O., Phthalocyanines containing macrocycles, Appl. Organometal. Chem., 10 (1996) 605-622.
  • Beall L.S., Mani N.S., White A.J.P., Williams D.J., Barrett A.G.M. and Hoffman B.M., Porphyrazines and Norphthalocyanines Bearing Nitrogen Donor Pockets: Metal Sensor Properties, J. Org. Chem., 63 (1998) 5806-5817.
  • Camur M. and Bulut M., Phthalocyanines prepared from 4-chloro-/4-hexylthio-5-(4-phenyloxyacetic acid)phthalonitriles and functionalization of the related phthalocyanines with hydroxymethylferrocene, J. Organomet. Chem., 695 (2010) 45-52.
  • Akkurt B. and Hamuryudan E., Enhancement of solubility via esterification: Synthesis and characterization of octakis (ester)-substituted phthalocyanines, Dyes and Pigments, 79 (2008) 153-158.
  • Sen P., Yildiz S.Z., Tuna M. and Canlica M., Preparation of aldehyde substituted phthalocyanines with improved yield and their use for Schiff base metal complex formation, J. Organomet. Chem., 769 (2014) 38-45.
  • Perrin D.D., Armarego W.L.F. and Perrin D.R., Purification of Laboratory Chemicals. New York, Pergamon Press, 1985.
  • Young J.G. and Onnebuagu W., Synthesis and characterization of di-disubstituted phthalocyanines, J. Org. Chem., 55 (1990) 2155-2159.
  • Becke A.D., Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98 (1993) 5648.
  • Lee C., Yang W. and Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988) 785-789.
  • Gaussian 09, Revision A.1, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J. and Fox D.J., Gaussian, Inc., Wallingford CT, 2009.
  • Sen P., Atmaca G.Y., Erdoğmuş A., Dege N., Genç H., Atalay Y. and Yildiz S.Z., The synthesis, characterization, crystal structure and photophysical properties of a new meso-BODIPY substituted phthalonitrile, J. Fluoresc., 25 (2015) 1225-1234
  • Stoe & Cie, X-AREA (Version 1.18) and X-RED32 (Version 1.04) Stoe & Cie, Darmstadt, Germany, 2002
  • Sheldrick G.M., Crystal structure refinement with SHELXL, Acta Crystallogr. A 64 (2008) 112-122.
  • Farrugia L.J., ORTEP‐3 for Windows ‐ a version of ORTEP‐III with a Graphical User Interface (GUI), J. Appl. Cryst., 30 (1997) 565.
  • Farrugia L.J., WinGX program features, J. Appl. Cryst., 32 (1999) 837-838.
  • Spek A.L., Single-crystal structure validation with the program PLATON, J. Appl. Cryst., 36 (2003) 7-13.
  • Tanak H., Köysal Y., Işık Ş., Yaman H. and Ahsen V., Experimental and computational approaches to the molecular structure of 3-(2-Mercaptopyridine) phthalonitrile, Bull. Korean Chem. Soc., 32 (2011) 673-679.
  • Jan C.Y., Shamsudin N.B.H., Tan A.L., Young D.J., Ng S.W. and Tiekink E.R.T., 4-Nitro-phthalonitrile, Acta Cryst. E 70 (2014) 323.