Yapay Sinir Ağı ile Yeni Üretilen Etkin Etkileşimle Proton Zengini Zn İzotopları için Kabuk Modeli Hesaplamaları

Bu çalışmada, fpg kabuk çekirdekleri için kullanılan iki cisim matris elemanlarının üretilmesi için yapay sinir ağı yöntemi kullanılmıştır. Bu amaçla, jj44b etkileşim Hamiltonian’i, kaynak olarak kabul edilmiştir. Yeni Hamiltonian'ın oluşumundan sonra, hem orijinal hem de yeni üretilen etkileşimin her ikisi de protonca zengin Zn izotopları üzerinde test edilmiştir. Elde edilen sonuçlara göre hesaplanan değerler birbirine yakındır. Ayrıca, yeni etkileşimden (jj44b_nn) elde edilen sonuçlar, mevcut deneysel değerlere ve literatür değerlerine daha yakın sonuç vermiştir.

Shell Model Calculations for Proton-rich Zn Isotopes via New Generated Effective Interaction by Artificial Neural Networks

In this study, the artificial neural network method has been employed for the generation of the new two-body matrix elements which is used for fpg shell nuclei. For this purpose, jj44b interaction Hamiltonian has been considered as a source. After the generation of the new Hamiltonian, both, original and new generated, are tested on proton-rich Zn isotopes. According to the results, the calculated values are close to the each other. As well the results from new interaction (jj44b_nn) are closer to the available experimental values in some cases.

___

  • Mayer, M.G., On Closed Shells in Nuclei. II, Phys.Rev. 75 (1949) 1969.
  • Jensen, J.H.D., et al.,On the "Magic Numbers" in Nuclear Structure, Phys.Rev. 75 (1949) 1766.
  • Mayer, M.G., On Closed Shells in Nuclei, Phys.Rev. 74 (1948) 235.
  • Mayer, M.G., Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence, Phys.Rev. 78 (1950) 16.
  • Talmi, I., 55 Years Of The Shell Model: A Challenge To Nuclear Many-Body Theory, Int.J.Mod.Phys.E 14 (2005) 821.
  • Caurier, E., etal., The shell model as a unified view of nuclear structure, Rev.Mod.Phy. 77 (2005) 427.
  • Brown, B.A., The nuclear shell model towards the drip lines, Prog.Part.Nucl.Phys. 47 (2001) 517.
  • Brown, B.A. and Lisetskiy, A.F., unpublished. The jj44b Hamiltonian was obtained from a fit to about 600 binding energies and excitation energies with a method similar to that used for the JUN45 Hamiltonian.
  • Neufcourt, L., et al., Bayesian approach to model-based extrapolation of nuclear observables, Phys.Rev. C 98 (2018) 034318.
  • Negoita, G.A., et al., Deep Learning: A Tool for Computational Nuclear Physics, arXiv:1803.03215 [physics.comp-ph] (2018).
  • Yildiz, N., et al., Consistent Empirical Physical Formula Construction for Gamma Ray Angular Distribution Coefficients by Layered Feedforward Neural Network, Cumhuriyet Sci.J., 39 (2018) 928.
  • Bayram, T., et al., A study on ground-state energies of nuclei by using neural networks, Ann.Nucl.Energy., 63 (2014) 172.
  • Akkoyun, S., et al., An artificial neural network application on nuclear charge radii, J. Phys. G: Nucl. Part. Phys., 40 (2013) 055106.
  • Shimizu, N. Nuclear shell-model code for massive paralel computation, KSHELL, arXiv:1310.5431 [nucl-th] (2013).
  • Haykin, S., Neural Networks: A Comprehensive Foundation (Englewood Cliffs, NJ: Prentice-Hall) (1999).
  • Brown, B.A., Rae, W.D.M., The Shell-Model Code NuShellX@MSU Nucl.Data Sheets. 120 (2014) 115.
  • REDSTICK, http://www.phys.lsu.edu/faculty/cjohnson/redstick.html
  • Jhonson, C.W., et al., BIGSTICK: A flexible configuration-interaction shell-model code, arXiv:1801.08432v1 [physics.comp-ph] (2018).
  • ANTOINE, http://www.iphc.cnrs.fr/nutheo/code_antoine/menu.html
  • B. A. Brown, et al., Oxbash for Windows, MSU_NSCL report number 1289.