Doğu Karadeniz Bölgesinde kozmik ışın kaynaklı yıllık etkin doz dağılımının belirlenmesi

Bu çalışmada doğal radyasyonun önemli bir kısmını oluşturan kozmik ışın kaynaklı yıllık etkin doz hızı dağılımı, Doğu Karadeniz Bölgesindeki üç il için (Artvin, Rize ve Trabzon) 2 200200m ’lik mekânsal çözünürlükte haritalandırılmıştır. Kozmik ışın kaynaklı yıllık etkin doz oranı hesaplamaları, Excel tabanlı çalışan bir program olan EXPACS ile enlem ve rakım değişimlerine bağlı olarak gerçekleştirilmiştir. Ayrıca çalışma alanında yaşayan nüfusun kozmik radyasyondan etkilenme seviyeleri de tespit edilmiştir. Çalışma alanının tamam için, Kozmik ışından kaynaklanan yılık etkin doz oranının ortalaması 0.65 mSv y-1 ve değişim aralığı (0.33-1.72) mSv y-1 olarak hesaplanmıştır. Çalışma alanının geneli için yıllık kollektif etkin doz hızı ise yaklaşık 508 insan-Sv y-1 olarak belirlenmiştir. Ayrıca kozmik radyasyondan kaynaklanan kişi başı yılık etkin doz, sırasıyla Artvin, Rize ve Trabzon için 449 1  Sv y , 376 1  Sv y ve 370 1  Sv y olarak tespit edilmiştir.

Determination of the annual effective dose distribution due to cosmic ray exposure of the Eastern Black Sea Region, Turkey

In this study, annual effective dose rate distribution due to cosmic radiation, which constitutes animportant part of natural radiation, was mapped in 2 200 200m  spatial pixels for three provinces in the EasternBlack Sea region (Artvin, Rize and Trabzon). Cosmic ray-induced annual effective dose calculations wereperformed based on latitude and altitude changes with EXPACS, an excel-based program. Besides, the effectof cosmic radiation on the population living in the study area was determined. For the entire study area, it wascalculated the average effective dose rate from Cosmic radiation as 0.65 mSv y-1 and range as (0.33-1.72) mSvy-1. The average annual collective effective dose rate was determined approximately 508 person-Sv y-1. Besides,the population-weighted average annual effective dose rates were obtained as 449  Sv y 1  , 376 1  Sv y and370 1  Sv y for Artvin, Rize and Trabzon provinces, respectively.

___

  • Yeşilkanat C.M., Kobya Y., Taskin H., Çevik U., Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods; A case study from Artvin, Turkey, J. Environ. Radioact. 150 (2015) 132–144. doi:10.1016/j.jenvrad.2015.08.011.
  • UNSCEAR, Source and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly with Annex B, United Nations, New York, 2000.
  • Zeyrek C.T., İyonize Radyasyon Uygulamaları İçin Güvenlik ve Korunmaya Yönelik Genel Kavramlar. (In Turkish), Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 17 (2013) 1–9.
  • Sato T., Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes, PLoS One. 11 (2016) 1–22. doi:10.1371/journal.pone.0160390.
  • Bagshaw M., Illig P., The Aircraft Cabin Environment, Fourth Edi, Elsevier Inc., 2018. doi:10.1016/b978-0-323-54696-6.00047-1.
  • Wilson B.G., Nehra C.P., Cosmic Ray Increases Associated with Solar Flares, J. Phys. Soc. Japan Suppl. 17 (1962) 269. https://ui.adsabs.harvard.edu/abs/1962JPSJS..17B.269W/abstract (accessed July 5, 2019).
  • Neher H. V., Cosmic rays at high latitudes and altitudes covering four solar maxima, J. Geophys. Res. 76 (1971) 1637–1651. doi:10.1029/JA076i007p01637.
  • O’Brien K., Friedberg W., Sauer H.H., Smart D.F., Atmospheric cosmic rays and solar energetic particles at aircraft altitudes., Environ. Int. 22 (1996) 9–44. http://www.ncbi.nlm.nih.gov/pubmed/11542509.
  • Sato T., Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS, PLoS One. 10 (2015) 1–33. doi:10.1371/journal.pone.0144679.
  • Sato T., Niita K., Matsuda N., Hashimoto S., Iwamoto Y., Noda S., Ogawa T., Iwase H., Nakashima H., Fukahori T., Okumura K., Kai T., S. Chiba, T. Furuta, L. Sihver, Particle and heavy ion transport code system, PHITS, version 2.52, J. Nucl. Sci. Technol. 50 (2013) 913–923. doi:10.1080/00223131.2013.814553.
  • Sato T., Niita K., Matsuda N., Hashimoto S., Iwamoto Y., Furuta T., Noda S., Ogawa T., Iwase H., Nakashima,H., Fukahori T., Okumura K., Kai T., Chiba S., Sihver L., Overview of particle and heavy ion transport code system PHITS, Ann. Nucl. Energy. 82 (2015) 110–115. doi:10.1016/J.ANUCENE.2014.08.023.
  • EXPACS, EXcel-based Program for calculating Atmospheric Cosmic-ray Spectrum (EXPACS),URL: https://phits.jaea.go.jp/expacs/, (2016).
  • Cinelli G., Gruber V., De Felice L., Bossew P., Hernandez-Ceballos M.A., Tollefsen T., Mundigl S., De Cort M., European annual cosmic-ray dose: Estimation of population exposure, J. Maps. 13 (2017) 812–821. doi:10.1080/17445647.2017.1384934.
  • Sato T., Evaluation of world population-weighted effective dose due to cosmic ray exposure, Sci. Rep. 6 (2016) 6–12. doi:10.1038/srep33932.
  • USGS, Digital elevation maps (DEM) data sets, http://earthexplorer.usgs.gov/ (Available date: 11.01.2015), (2013). http://earthexplorer.usgs.gov/.
  • YEGM, Yenilenebilier Enerji Genel Müdrlüğü (YEGM), Tükiye Güneş Enerjisi Potansiyel Atlası (GEPA), URL: http://www.yegm.gov.tr/MyCalculator/, (2019).
  • WorldPop, WorldPop (www.worldpop.org) and Center for International Earth Science Information Network (CIESIN), Columbia University, (2018). doi:https://dx.doi.org/10.5258/SOTON/WP00645.
  • Stevens F.R., Gaughan A.E., Linard C., Tatem A.J., Disaggregating census data for population mapping using Random forests with remotely-sensed and ancillary data, PLoS One. 10 (2015) 1–22. doi:10.1371/journal.pone.0107042.
  • Turkish Statistical Institute (TurkStat), Population Statistics, URL: http://www.turkstat.gov.tr/UstMenu.do?metod=temelist. Date Accessed: 14.02.2019, (2019).
  • Eisenbud M., Gesell T., Enviromental Radioactivity, 4. edition, Academic Press, 1997.
  • Rasolonjatovo D.A.H., Suzuki H., Hirabayashi N., Nunomiya T., Nakamura T., Nakao N., Measurement for the dose-rates of the cosmic-ray components on the ground., J. Radiat. Res. 43 Suppl (2002) S27-33. doi:10.1269/jrr.43.s27.
  • Schlickeiser R., Direct Observations of Cosmic Rays, in: 2002: pp. 25–71. doi:10.1007/978-3-662-04814-6_3.
  • Ihaka R., Gentleman R., R: A Language for Data Analysis and Graphics, J. Comput. Graph. Stat. 5 (1996) 299–314. doi:10.1080/10618600.1996.10474713.
  • Quantum GIS Development Team, Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project, (2018). https://qgis.org/en/site/index.html (date accessed: 10.12.2018).
  • Böhner J., Bock M., Wichmann V., Fischer E., Wehberg J., Conrad O., Bechtel B., Dietrich H., Gerlitz L., System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev. 8 (2015) 1991–2007. doi:10.5194/gmd-8-1991-2015.