Jüt, E-cam ve Karbon Kumaşların Termo-mekanik Analizi

Tekstil malzemeleri, kompozit sektöründe en çok tercih edilen takviye malzemelerinden biridir. Bu çalışmada, üç farklı lifle dokunmuş (jüt, karbon ve E-cam) altı farklı kumaşın termo-mekanik özellikleri dinamik mekanik analiz (DMA), diferansiyel taramalı kalorimetre (DSC) ve termogravimetrik analiz (TGA) metodlarıyla incelenmiştir. DMA sonuçlarına göre E-cam ve karbon kumaşların modülleri artan sıcaklıkla birlikte azalırken, jüt kumaşların modüllerinde artış görülmüştür. DSC grafikleri ise 25°C 200°C arasında numunelerde bir faz değişimi olmadığını göstermiştir. TGA sonuçları göz önünde bulundurulduğunda ise, jüt kumaşlarda 255°C ve 340°C civarlarında ani ağırlık kayıpları olduğu görülürken, karbon kumaşlarda 530°C civarında ağırlık kaybı olduğu tespit edilmiştir

Thermo-mechanical Analysis of Jute, E-glass and Carbon Fabrics

Textile materials are one of the most favored reinforcement materials in the composite industry. In this study, thermo-mechanical properties of six various fabrics which are woven with three different yarns (jute, E-glass and carbon) are investigated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. According to DMA results, moduli of E-glass and carbon samples decrease with increasing temperature while it increases at jute samples. DSC graphs showed that there is not any phase change between 25°C - 200°C at any of the samples. Considering the TGA results, it is realized that while jute fabrics have two sharp weight losses at about 255°C and 340°C, carbon fabrics have a weight loss at about 530°C

___

  • 1. Pihtili, H., Tosun, N., 2002. Effect of Load and Speed on the Wear Behaviour of Woven Glass Fabrics and Aramid fibre-reinforced Composites, Wear, 252: 979–984.
  • 2. Sapuan, SM., Maleque, MA., 2005. Design and Fabrication of Natural Woven Fabric Reinforced Epoxy Composite for Household Telephone Stand. Materials & Design, 26: 65–71.
  • 3. Ding, YQ., Yan, Y., McIlhagger, R., Brown, D., 1995. Comparison of the Fatigue Behaviour of 2-D and 3-D Woven Fabric Reinforced Composites. Journal of Materials Processing Technology, 55: 171-177.
  • 4. Khan, JA., Khan, MA., Islam, R., Gafur, A., 2010. Mechanical, Thermal and Interfacial Properties of Jute Fabric-reinforced Polypropylene Composites: Effect of Potassium Dichromate. Materials Sciences and Applications, 1: 350-357.
  • 5. Gowda, TM., Naidu, ACB., Chhaya, R., 1999. Some Mechanical Properties of Untreated Jute Fabric-reinforced Polyester Composites, Composites Part A, 30: 277–284.
  • 6. Bhagat, VK., Biswas, S., Dehury, J., 2014. Physical, Mechanical and Water Absorption Behavior of Coir/glass Fiber Reinforced Epoxy Based Hybrid Composites. Polymer Composites, 35(5): 925-930.
  • 7. Hassan, MM., Islam, MR., Shehrzade, S., Khan, MA., 2003. Influence of Mercerization Along with Ultraviolet (uv) and Gamma Radiation on Physical and Mechanical Properties of Jute Yarn by Grafting With 3- (trimethoxysilyl) Propylmethacrylate (silane) and Acrylamide Under Uv Radiation. PolymerPlastics Technology and Engineering, 42: 515-531.
  • 8. Ahmed, KS., Vijayarangan, S., Naidu, ACB., 2007. Elastic Properties, Notched Strength and Fracture Criterion in Untreated Woven Jute– glass Fabric Reinforced Polyester Hybrid Composites. Materials & Design, 28: 2287–2294.
  • 9. Sreekala, MS., George, J., Kumaran, MG., Thomas, S., 2002. The Mechanical Performance of Hybrid Phenol-formaldehydebased Composites Reinforced with Glass and Oil Palm Fibres. Composites Science and Technology, 62: 339–353.
  • 10. Sanjay, MR., Arpitha, GR., Yogesha, B., 2015. Study on Mechanical Properties of NaturalGlass Fibre Reinforced Polymer Hybrid Composites: a Review, Materials Today: Proceedings, 2: 2959 – 2967.
  • 11. Dong, C., Davies, IJ., 2012. Optimal Design for the Flexural Behaviour of Glass and Carbon Fibre Reinforced Polymer Hybrid Composites, Materials & Design, 37: 450–457.
  • 12.Bijwe, J., Rattan, R., Fahim, M., 2007. Abrasive Wear Performance of Carbon Fabric Reinforced Polyetherimide Composites: Influence of Content and Orientation of Fabric. Tribology International, 40: 844–854.
  • 13. Pillay, S., Vaidya, UK., Janowski, GM., 2009. Effects of Moisture and UV Exposure on Liquid Molded Carbon Fabric Reinforced Nylon 6 Composite Laminates. Composites Science and Technology, 69: 839–846.
  • 14.Rattan, R., Bijwe, J., 2007. Influence of Impingement Angle on Solid Particle Erosion of Carbon Fabric Reinforced Polyetherimide Composite. Wear, 262: 568–574.
  • 15. Zhang, ZZ., Su, FH., Wang, K., Jiang, W., Men, X., Liu, W., 2005. Study on the Friction and Wear Properties of Carbon Fabric Composites Reinforced with Micro- and Nanoparticles. Materials Science and Engineering A, 404: 251–258.
  • 16. Zhang, J., Chaisombat, K., He, S., Wang, CH., 2012. Hybrid Composite Laminates Reinforced with Glass/carbon Woven Fabrics for Lightweight Load Bearing Structures, Materials & Design, 36: 75–80.
  • 17. Pandita, SD., Yuan, X., Manan, MA., Lau, CH., Subramanian, AS., Wei, J., 2014. Evaluation of Jute/glass Hybrid Composite Sandwich: Water Resistance, Impact Properties and Life Cycle Assessment. Journal of Reinforced Plastics and Composites, 33(1): 14-25.
  • 18. De Rosa, IM., Santulli, C., Sarasini, F., Valente, M., 2009. Post-impact Damage Characterization of Hybrid Configurations of Jute/glass Polyester Laminates using Acoustic Emission and IR Thermography, Composites Science and Technology, 69: 1142–1150.
  • 19. Goertzen, WK., Kessler, MR., 2007. Dynamic Mechanical Analysis of Carbon/epoxy Composites for Structural Pipeline Repair, Composites Part B, 38: 1–9.
  • 20. Pothan, LA., Oommen, Z., Thomas, S., 2003. Dynamic Mechanical Analysis of Banana Fiber Reinforced Polyester Composites. Composites Science and Technology, 63: 283–293.
  • 21. Saha, AK., Das, S., Bhatta, D., Mitra, BC., 1999. Study of Jute Fiber Reinforced Polyester Composites by Dynamic Mechanical Analysis. Journal of Applied Polymer Science, 71: 1505–1513.
  • 22. Tejyan, S., Patnaik, A., Singh, T., 2013. Effect of Fibre Weight Percentage on ThermoMechanical Properties of Needlepunched Nonwoven Reinforced Polymer Composites. International Journal of Research in Mechanical Engineering and Technology, 3(2): 41-44.
  • 23.Joseph, PV., Joseph, K., Thomas, S., Pillai, CKS., Prasad, VS., Groeninckx, G., Sarkissova, M., 2003. The Thermal and Crystallisation Studies of Short Sisal Fibre Reinforced Polypropylene Composites. Composites Part A, 34: 253–266.
  • 24. Me, Z., Chung, DDL., 2000. Glass Transition and Melting Behavior of Carbon Fiber Reinforced Thermoplastic Composite, Studied by Electrical Resistance Measurement. Polymer Composites, 21(5): 711-715.
  • 25. Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G., 2004. A Study of Pyrolysis and Pyrolysis Products of Flame-retardant Cotton Fabrics by DSC, TGA, and PY–GC–MS. Journal of Analytical and Applied Pyrolysis, 71: 645–655.
  • 26.Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, JM., Ham-Pichavant, F., Cansell, F., Aymonier, C., 2011. Thermogravimetric Analysis as a New Method to Determine the Lignocellulosic Composition of Biomass. Biomass and Bioenergy, 35: 298-307.
  • 27.Baley, C., 2002. Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase. Composites Part A, 33: 939–948.
  • 28. Owuor, P., Tcherbi-Narteh, A., Hosur, M., Jeelani, S., 2014. Durability Studies of Hybrid Composite of E-glass/carbon Fibers in Different Solvents for Bridge Deck Panel Application, ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada.
  • 29. Ghosh, P., Bose, NR., Mitra, BC., Das, S., 1997. Dynamic Mechanical Analysis of FRP Composites Based on Different Fiber Reinforcements and Epoxy Resin as the Matrix Material, Journal of Applied Polymer Science, 62: 2467-2472.
  • 30. Niedermann, P., Szebenyi, G., Toldy, A., 2015. Characterization of High Glass Transition Temperature Sugar-based Epoxy Resin Composites with Jute and Carbon Fibre Reinforcement, Composites Science and Technology, 117: 62-68.
  • 31. Nair, KCM., Thomas, S., Groeninck, G., 2001. Thermal and Dynamic Mechanical Analysis of Polystyrene Composites Reinforced with Short Sisal Fibres. Composites Science and Technology, 61: 2519–2529.
  • 32.Raghavendra, G., Kumar, KA., Kumar, MH, Raghukumar, B., Ojha, S., 2015. Moisture Absorption Behavior and its Effect on the Mechanical Properties of Jute-reinforced Epoxy Composite. Polymer Composites, doi: 10.1002/pc.
  • 33. Lv, G., Wu, S., Lou, R., 2010. Kinetic Study of the Thermal Decomposition of Hemicellulose Isolated from Corn Stalk. Bioresources, 5(2): 1281-1291.
  • 34. Yang, H., Yan, R., Chen, H., Lee, DH., Zheng, C., 2007. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86: 1781–1788.