Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing

Bu çalışmada, cevher hazırlamada ıslanabilirliğe dayanan işlemlerden olan flotasyon, makaslama flokülasyonu, yağ aglomerasyonu ve sıvı–sıvı ekstraksiyonu için kritik parametreler değerlendirilmiştir. Bu işlemlerde ‘kritik ıslanma yüzey gerilimi (c)’ değeri oldukça önemlidir. Ayrıca, mineralin c değerinden biraz yüksek olan ‘yağ aglomerasyonu için kritik çözelti yüzey gerilimi (c-a)’ ve ‘sıvısıvı ekstraksiyonu için kritik çözelti yüzey gerilimi (c-e)’ değerleri yağ aglomerasyonu ve sıvısıvı ekstraksiyonu tekniklerinin başarılı olabilmesini sağlayan parametrelerdir. Katı, sıvı/ortam ve yağdan oluşan üçlü faz sistemlerinin bulunduğu yağ aglomerasyonu ve sıvısıvı ekstraksiyonu yöntemlerinde, yağsıvı ara yüzey gerilimine (γOL) dayanan ikincil kritik parametreler ise sırasıyla ‘yağ aglomerasyonu için kritik yağsıvı ara yüzey gerilimi, γcOLa’ ve ‘sıvısıvı ekstraksiyonu için kritik yağsıvı ara yüzey gerilimi, γcOLe’dir.

Cevher Hazırlamada Islanabilirliğe Dayanan İşlemler İçin Kritik Parametrelerin Değerlendirilmesi Özet

This paper presents an evaluation of critical parameters for wettability-based processes such as flotation, shear flocculation, oil agglomeration and liquid–liquid extraction in mineral processing. ‘The critical surface tension of wetting (c)’ value of minerals has crucial importance in these processes. Also, ‘the critical solution surface tension for oil agglomeration (c-a)’ and ‘the critical solution surface tension for liquidliquid extraction (c-e)’ parameters, which are slightly higher than the c value of the mineral, exist for achieving the oil agglomeration and liquidliquid extraction techniques. In the case of three-phase systems composed of solid, liquid/medium and oil such as oil agglomeration and liquidliquid extraction techniques, there is a second critical parameter based on the oilliquid interfacial tension (γOL ) which are ‘the critical oilliquid interfacial tension for oil agglomeration, γcOLa’ and ‘the critical oilliquid interfacial tension for liquidliquid extraction, γcOLe’, respectively.

___

  • 1. Somasundaran, P., 1980. Principles of Flocculation, Dispersion, and Selective Flocculation, in Fine Particle Processing, Somasundaran, P., Ed., AIME, New York, 947–975.
  • 2. Capes, C.E., Darcovich, K., A., 1984. Survey of Oil Agglomeration in Wet Fine Coal Processing. Powder Technology, 40: 43–52,
  • 3. Yarar, B., 1988a. Gamma Flotation: A New Approach to Flotation, Using Liquid–Vapor Surface Tension Control, in Developments in Mineral Processing, Castro, S.H., and Alvarez, J., Eds., Elsevier, New York, 4164p.
  • 4. Laskowski, J.S., 1992. Oil Assisted Fine Particle Processing, in Colloid Chemistry in Mineral Processing, Laskowski, J.S., and Ralston, J., Eds., Elsevier, New York, 361-394.
  • 5. Kusaka, E., Kamata, Y., Fukunata, Y., Nakahiro, Y., 1998. Effect of Hydrolysed Metal Cations on the Liquid–Liquid Extraction of Silica Fines with Cetyltrimethylammonium Chloride, Colloids Surf. A: Physicochem. Eng. Aspects, 139: 155–162.
  • 6. Ozkan, A., Aydogan, S. Yekeler, M., 2005. Critical Solution Surface Tension for Oil Agglomeration, International Journal of Mineral Processing, 76: 83–91.
  • 7. Duzyol, S., Ozkan, A., Yekeler, M., 2012. Critical Oil–Liquid Interfacial Tension for some Oil-Assisted Fine Particle Processing Methods, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398:32–36.
  • 8. Fuerstenau, D.W., Diago, J., Williams, M.C., 1991. Characterization of the Wettability of Solid Particles by Film Flotation 1. Experimental Investigation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 60: 127−144.
  • 9. Yarar, B., 1988b. Flotation, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. B2(23), VCH, Weinheim, 1–29.
  • 10. Warren, L.J., 1975. Shear Flocculation of Ultrafine Scheelite in Sodium Oleate Solutions, J. Colloid Interface Sci., 50: 307–318.
  • 11. Koh, P.T.L., Warren, L.J., 1980. A Pilot Plant Test of the Shear Flocculation of Ultrafine Scheelite, in Trans. 8th Aust. Chem. Eng. Conf., Melbourne, 90–94.
  • 12. Laskowski, J.S., 2000. Aggregation of Fine Particles in Mineral Processing Circuits, in Proceedings of the 8th International Mineral Processing Symposium, Ozbayoglu, G., Hosten, C., Atalay, M.U., Hicyilmaz, C., and Arol A.I. Eds., Antalya, Turkey, Balkema, Rotterdam, 139–147.
  • 13. Yekeler, M., Yarar, B., 1994a. Critical Surface Tension of Wetting of Low Surface Energy Minerals and Their Separations by Gamma Flotation: Realger, Talc, Stibnite and Sulfur, New Mexico: SME Annual Meeting, Preprint, 94–17.
  • 14. Shafrin, E.G., Zisman, W.A., 1960. Constitutive Relations in the Wetting of Low Energy Surfaces and the Theory of the Retraction Method of Preparing Monolayers, J. Phys. Chem., 64: 519−524,
  • 15. Yarar, B., Kaoma, J., 1984. Estimation of the Critical Surface Tension of Wetting of Hydrophobic Solids by Flotation, Colloids and Surfaces, 11: 429–436.
  • 16. Williams, M.C., Fuerstenau, D.W., 1987. A Simple Flotation Method for Rapidly Assessing the Hydrophobicity of Coal particles, International Journal of Mineral Processing, 20: 153–157.
  • 17. Sun, S.C., Troxell, R.C., 1957. Try Bubble Pick up for Rapid Flotation Testing. E. & M. J., 158 (7): 79–80.
  • 18. Walker, P.L., Peterson, E.E., Wright, S.S., 1952. Surface Active Agent Phenomena in Dust Abatement”, Ind. Eng. Chem., 44: 2389– 2393.
  • 19. Rosano, H.L., Gerbacia, W., Feinstein, M.E., Swaine, J.W., 1971. Determination of the Critical Surface Tension Using an Automatic Wetting Balance, J. Colloid Interface Sci., 36 (3): 298–307.
  • 20. Wu, S., 1968. Estimation of the Critical Surface Tension for Polymers from Molecular Constitution by a Modified Hildebrand–Scott Equation, J. Phys. Chem., 72 (9): 3332–3334.
  • 21. Ozkan, A., 2004. Determination of the Critical Surface Tension of Wetting of Minerals Treated with Surfactants by Shear Flocculation Approach”, Journal of Colloid and Interface Science, 277: 437−442.
  • 22. Kelebek, S., 1987. Critical Surface Tension of Wetting and of Floatability of Molybdenite and Sulfur, Journal of Colloid and Interface Science, 124: 504−514.
  • 23. Yekeler, M., Yarar, B., 1994b. Techniques for Assessing the Floatability Characteristics of Minerals, Cukurova University 15th Anniversary Symposium, Anıl, M. Ed., Adana, 473−480.
  • 24. Ozkan, A., Duzyol, S., 2010. Critical Solution Surface Tension for Liquid–Liquid Extraction , Separation and Purification Technology, 76 (1): 79-83.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ